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1.	 Introduction
Wendy B. Foden, Bruce E. Young and James Watson

Changes have already been observed in a wide range of 
components of the Earth’s climate system (Garcia et al., 
2014b), and ongoing changes are predicted, including in long-
term climate patterns and trends, the magnitude and frequency 
of acute extreme weather events, and secondary impacts such as 
loss of sea ice and sea-level rise. Increases in atmospheric carbon 
dioxide concentration and ocean acidification accompany them. 
These changes are having far-reaching impacts on biodiversity 
(Thomas et al., 2004; Fischlin et al., 2007; IPCC, 2014), 
including at organismal, subpopulation, species and ecosystem 
levels. For some species, the net impacts have been positive 
(Fraser et al., 1992; Urban et al., 2007; Kearney & Porter, 
2009), but for many more, the speed, magnitude and rate of 
change are having negative fitness consequences for individuals 
which can lead to local or even global extinction of species 
(Caswell et  al., 2009; Jenouvrier et al., 2009; Hunter et  al., 

2010; Fordham et al., 2013a; Settele et al., 2014). Projections 
show that even under the most optimistic emissions scenarios, 
climate change impacts on biodiversity will be increasingly 
severe over the next century and beyond (IPCC, 2014). 

Climate change impacts may manifest directly, such as 
through the physiological stress experienced when ambient 
summer temperatures exceed organisms’ tolerances. Direct 
impacts typically include changes in behaviour, phenology and 
reproduction, and ultimately in survival of the organism and 
potentially its subpopulation and species. Other impacts occur 
indirectly through effects on interactions with other species 
including prey, predators, competitors, parasites or hosts, or on 
a species’ habitat, as well as through interactions with other 
threatening processes such as habitat loss. Humans’ reactions 
and responses to climate change (e.g., shifting agricultural 

An aerial view of Great Barrier Reef. One of the starkest examples of species and ecosystem-level vulnerability to the dual climate change 
impacts of global warming and ocean acidification. © Paul Pearce-Kelly
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areas, building dams and seawalls, migration) may also have 
marked impact ‘on species’ survival and capacity to adapt to 
climate change (Maxwell et al., 2015; Segan et al., 2015). It 
is likely that some mechanisms of climate change impacts on 
species are yet to be discovered.

Predicting climate change impacts on biodiversity is a major 
scientific challenge (Pereira et al., 2010; Pacifici et al., 2015), 
but doing so is important for a variety of reasons. Assessments 
of degrees of threat or extinction risk (e.g., through the IUCN 
Red List) typically contribute essential information to inform 
conservation action plans, as well as laws and regulations. 
In addition, climate change adaptation planning generally 
requires information on the mechanisms and patterns of 
impact so that appropriate actions can be identified and 
evaluated. In the few decades since the threat of climate change 
has been recognized, the conservation community has risen 
to the challenge of assessing vulnerability to climate change. 
A range of methods have been developed for climate change 
vulnerability assessment (CCVA) of species and a large and 
burgeoning scientific literature is emerging on this subject. Our 
motivation for preparing this document is to ease the challenge 
that conservation practitioners face in interpreting and using 
the complex and often inconsistent CCVA literature. 

There is no single ‘correct’ or established way to carry out CCVA 
of species. We have aimed here to guide users toward sensible 
and defensible approaches, given the current state of knowledge 
and their objectives and available resources. Considering the 
rapid pace of developments in this young and exciting field, 
we anticipate regularly updating and refining the document in 
subsequent versions. Our intended target audiences include, 
amongst others, conservation practitioners (e.g., for CCVA 
of their focal species or the species in their focal area) and 
researchers (e.g., for carrying out CCVA to serve conservation, 
or to evaluate the rigorousness of others’ studies) (Figure 1). 

We focus here on CCVA of species, but by no means imply that 
assessments at habitat or ecosystem scales are less important.

This guidance document has been developed by a Climate 
Change Vulnerability Assessment working group convened 
under the IUCN Species Survival Commission’s Climate 
Change Specialist Group. The authors’ collective experience 
covers a broad range of ecosystems, taxonomic groups, 
conservation sectors and geographic regions, and has been 
supplemented by an extensive literature review. No guidance 
on this topic can be exhaustive, but nonetheless, we hope that it 
provides a useful reference for those wishing to understand and 
assess climate change impacts on their focal species, at site, site 
network and/or at broader spatial scales. Since this guidance 
will be revised in subsequent guidelines versions, we would 
greatly value feedback and suggestions.

CCVA is a foundation for sound and effective conservation 
under climate change. Several valuable resources on broader 
aspects of climate change and conservation are available, 
including for climate change adaptation planning for species 
and ecosystems (see Box 1). Since vulnerability assessment is an 
important adaptation planning step (Stein et al., 2014), most 
of these publications have some coverage of climate change 
vulnerability assessment, including of species, habitats and 
ecosystems. The guidance we present, however, is more detailed 
and extensive and focuses specifically on the challenging topic 
of CCVA of species. We encourage readers to use our guidance 
along with broader climate change and conservation literature. 

T﻿hese guidelines cover an outline of some of the terms 
commonly used in climate change vulnerability assessment 
(CCVA), and describe three dominant CCVA approaches, 
namely correlative (niche-based), mechanistic and trait-based 
approaches. We discuss how to set clear, measurable CCVA 
objectives and how to select CCVA approaches and associated 

Figure 1. The target audiences 
for which these guidelines were 
developed.
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Box 1. Literature resources for climate change adaptation and vulnerability assessment

•	 Responding to Climate Change: Guidance for Protected Area Managers and Planners. Developed by the IUCN World Commission 
on Protected Areas (Gross et al., 2016).

•	 Climate-Smart Conservation: Putting Adaptation Principles into Practice. Developed by the US National Wildlife Federation (Stein 
et al., 2014).

•	 Climate Change Vulnerability Assessment for Natural Resources Management: Toolbox of Methods with Case Studies. Developed 
by the US Fish and Wildlife Service (Johnson, 2014).

•	 Scanning the Conservation Horizon: A Guide to Climate Change Vulnerability Assessment. Developed by a workgroup of US 
government, non-profit, and academic institutions (Glick et al., 2011)

•	 Climate Change and Conservation: A Primer for Assessing Impacts and Advancing Ecosystem-based Adaptation in The Nature 
Conservancy (Groves et al., 2010). 

•	 The IUCN SSC Guidelines on Species Conservation Planning (IUCN/SSC 2008; updated version in prep.)
•	 The Adaptation for Conservation Targets (ACT) Framework: A Tool for Incorporating Climate Change into Natural Resource 

Management (Cross et al., 2012a, 2013). 
•	 Voluntary guidance for states to incorporate climate change into state wildlife action plans and other management plans. 

Developed by the Association of Fish and Wildlife Agencies (AFWA, 2009).
•	 The Climate Adaptation Knowledge Exchange (http://www.cakex.org)

methods that are appropriate for meeting these objectives. We 
then provide ways for users to evaluate their data, knowledge 
and technical resources, and subsequently refine their approach 
and method selection. Guidance on using and interpreting 
CCVA results includes suggestions on data sources and their 
use, working with knowledge gaps and uncertainty, using 
CCVA for Red Listing, approaches for challenging species 
assessment contexts, and how to include indirect climate 
change impacts such as habitat transformation. We also discuss 
how best to communicate results for decision-making and 
recommend possible future directions for the field of CCVA 
for species. Finally, we provide case studies demonstrating 
how the guidelines can be applied, including for the purpose 
of IUCN Red Listing procedures. Through the guidelines, we 
hope to promote standardization of CCVA terminology and to 
provide a useful resource for those wishing to carry out CCVA 

of species to inform conservation at species, site or site network 
scales. By helping practitioners to carry out robust CCVA of 
species, we believe that they will have a solid foundation for 
their climate change adaptation strategies and action plans.

This guide is structured to provide readers first with background 
information on definitions and metrics associated with 
CCVA. A discussion on identifying CCVA objectives follows, 
setting the stage for core guidance on selecting and applying 
appropriate methods. The subsequent sections focus on 
interpreting and communicating results, as well as suggestions 
for using results in Red List assessments and addressing the 
many sources of uncertainty in CCVAs. A final section 
explores future directions for CCVAs and research needs. The 
guide ends with ten case studies that provide essentially worked 
examples of CCVAs that cover the range of methods described.

1. Introduction
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Top and below left: Staghorn Corals (e.g., Acropora cervicornis) bleach when high sea temperatures cause them to expel their Zooxanthellae 
algae and thereby to lose their food supply and colour. When sea surface temperatures are consistently above the bleaching threshold, large 
coral reef areas reef die, break up and become rubble. © Emre Turak. Below right: Paul Pearce-Kelly observes coral bleaching on the Great 
Barrier Reef. © Paul Pearce-Kelly 
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2.1 Definitions of commonly used terms

Climate Change 
The IPCC’s most recent (fifth) assessment report defines climate 
change as “a change in the state of the climate that can be identified 
(e.g., by using statistical tests) by changes in the mean and/or the 
variability of its properties, and that persists for an extended period, 
typically decades or longer” (IPCC, 2013a). Climate change 
results from both natural global cycles as well as from external 
drivers of change such as shifts in solar cycles, volcanic eruptions 
and persistent human influences on the composition of the 
atmosphere or land cover. In both the scientific literature and 
a wider global context, the term is commonly used to describe 
the changes that are attributable solely or predominantly to 
human activities. These may be at local, regional and global 
scales and are widely regarded as having begun at the onset of 
the Industrial Revolution in the 18th century. 

We note that the GCM community strongly advocates 
using the term “scenario” rather than “prediction” to refer to 
model outcomes based on emissions pathways. Essentially, 
the difference is that scenarios use an explicit “if… then…” 
whereas we often forget the “if…” part when using the term 
“prediction”. The distinction is semantic, but it addresses the 

highly likely possibility that the world will not evolve exactly as 
our models indicate it could, even if socioeconomic conditions 
were to conform exactly to those for any particular emissions 
scenario. Given the many uncertainties inherent in CCVAs, 
they should be regarded as scenario-based.

Vulnerability
Vulnerability is a central concept in climate change research 
and policy, across both environment and human development 
fields. Although there is broad consensus that it represents 
“a measure of possible future harm” (Hinkel, 2011), use of the 
term is often vague and inconsistent both within and between 
these fields (Ionescu et al., 2009; Hinkel, 2011). In the IPCC’s 
fifth assessment report (IPCC, 2014), definitions for key terms 
diverge from those in their previous assessment reports (e.g., 
IPCC, 2007). Because the previous definitions were widely 
adopted and are pervasive in the conservation and adaptation 
communities, and because they align with the IUCN Red List’s 
consideration of vulnerability as a category of risk, we follow 
the IPCC 2007 definition. We explore the differences and 
similarities in the two sets of definitions in Box 2 (including 
Figures 2 and 3), draw on the new definitions to strengthen 
and highlight some aspects of the existing ones and, as far as 
possible, accommodate both below.

2.	 Setting the scene
Wendy B. Foden, Michela Pacifici and David Hole

IPCC 5th Assessment definitions of terms (2014)

Box 2. Comparison of climate change vulnerability terms currently in use

Definitions of terms used in these guidelines
(reflects usage in IPCC 4th Assessment (2007) and by the 
conservation community)

Figure 2. Schematic diagram showing three 
components of vulnerability in CCVAs. The greatest 
vulnerability to climate change occurs when species are 
exposed to large and/or rapid climate change-driven 
alterations in their physical environment, are sensitive to 
those changes, and have low adaptive capacity (adapted 
from Foden et al., 2013).

Figure 3. Risk of climate-related impacts results from 
the interaction of climate-related hazards (including 
hazardous events and trends) with the vulnerability 
and exposure of human and natural systems (adapted 
from IPCC, 2013).
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Overarching measures of concern

Vulnerability
The extent to which biodiversity is susceptible to or unable to 
cope with the adverse effects of climate change. It is a function 
of the character, magnitude and rate of climate change to 
which the system is exposed, its sensitivity and its adaptive 
capacity (IPCC, 2007a) (Differs from IPCC, 2014).

Risk
The probability of harmful consequences resulting from climate 
change. Risk results from the interaction of vulnerability, 
exposure, and hazard. Risk is often represented as probability 
of occurrence of hazardous events or trends multiplied by 
the impacts if these events or trends occur (IPCC, 2014) (not 
defined in 2007).

Impact
The effects, consequences or outcomes of climate change on 
natural and human systems. It is a function of the interactions 
between climate changes or hazardous climate events 
occurring within a specific time period and the vulnerability 
of an exposed society or system (IPCC, 2014). (Differs from 
IPCC, 2007, which describes impacts as potential or residual 
based on adaptation potential).

Intrinsic contributing factors

Sensitivity
Sensitivity is the degree to which a system is affected, either 
adversely or beneficially, by climate variability or change 
(IPCC, 2007a, 2014).

Adaptive Capacity
The potential, capability, or ability of a species, ecosystem 
or human system to adjust to climate change, to moderate 
potential damage, to take advantage of opportunities, or to 
respond to the consequences (IPCC, 2007a, 2014).

Vulnerability
‘The propensity or predisposition to be adversely affected. In 
this usage, vulnerability encompasses a variety of concepts, 
particularly sensitivity to harm and lack of capacity to cope 
and adapt.’ (IPCC, 2014) (Differs from IPCC, 2007).

Exposure
The presence of people, livelihoods, species or ecosystems, 
environmental functions, services, and resources, 
infrastructure, or economic, social, or cultural assets in places 
and settings that could be adversely affected (IPCC, 2014) 
(Not defined in IPCC, 2007).

External contributing factors

Exposure
Exposure describes the nature, magnitude and rate of climatic 
and associated environmental changes experienced by a 
species (Dawson et al., 2011; Foden et al., 2013; Stein et al., 
2014) (Not defined in IPCC, 2007).

Hazard
The potential occurrence of a natural or human-induced 
physical event or trend or physical impact that may cause loss 
of life, injury, or other health impacts, as well as damage and 
loss to property, infrastructure, livelihoods, service provision, 
ecosystems, and environmental resources. In this report, the 
term hazard usually refers to climate-related physical events 
or trends or their physical impacts (IPCC, 2014) (Not defined 
in IPCC, 2007).

We consider climate change vulnerability to be the extent to 
which biodiversity will be adversely affected by climate 
change (IPCC 2007; IPCC, 2014). This description is useful 
for general and conceptual purposes; when users begin making 
use of the term for more specific purposes such as for assessments 
of climate change vulnerability, definition of key vulnerability 
variables is required (see Figure 2). Climate change vulnerability 
may describe a range of different biological hierarchy levels 
or entities (e.g., from subpopulations to ecosystems), at 
different spatial scales (e.g., from sites to globally), considering 
different biodiversity impact types (e.g., from extinction risk 
to declines in ecosystem function or evolutionary diversity), 
considering different aspects of climate change (e.g., impacts 
from direct climate change to indirect impacts from humans 

and biodiversity responding to climate change) and covering 
considerably different time frames (e.g., 5 year to 100 year 
time frames). Many studies have failed to explicitly define 
such variables, resulting in difficulties with interpreting and 
comparing among results. In the context of climate change 
vulnerability assessment, we strongly encourage users of the 
term “climate change vulnerability” to explicitly define their key 
variables, namely the ‘Entity (OF)’, ‘Spatial scale’ (IN), ‘Impact 
type’ (TO), ‘Cause’ (FROM) and ‘Time frame’ (WITHIN), in 
which vulnerability is being considered (Figure 4). 

Vulnerability is a function of the character, magnitude and rate 
of the climate change to which the species or entity is exposed 
(i.e., external factors), and its intrinsic sensitivity and adaptive 



7

capacity. These three components of vulnerability, namely 
exposure, sensitivity, and adaptive capacity, provide a valuable 
entry point into climate change vulnerability assessments. 
While these terms can be broadly applied at a range of scales 
to both natural and human systems, we outline them below 
in the context of species’ vulnerability to climate change and 
highlight their relationship with climate change vulnerability 
in Figure 2.

Exposure
Exposure describes the nature, magnitude and rate of changes 
experienced by a species, and includes changes in both 
direct climatic variables (e.g., temperature, precipitation) 
and associated factors (e.g., sea level rise, drought frequency, 
and ocean acidification) (e.g., Stein et al., 2014). Changes in 
habitats and regions occupied by the species are also included 
(e.g., Dawson et al., 2011). Measures of future climate exposure 
are typically informed by scenario projections derived from 
General Circulation Models (GCMs).

Sensitivity
Sensitivity is the degree to which a species, habitat or ecosystem 
is or is likely to be affected by or responsive to changes (e.g., 
Glick et al., 2011). This depends on how tightly the species is 

coupled to its historical climatic conditions, particularly those 
climate variables that are expected to change in the future (e.g., 
Dawson et al., 2011). 

Sensitivity is mediated by a range of characteristics that 
influence the fitness of individuals and recovery of populations 
comprizing a species. These characteristics include physiological, 
behavioural and life history traits that influence: the degree 
to which species are buffered from exposure to sub-optimal 
conditions; their ability to tolerate changes in environmental 
conditions and cues, as well as in interspecific interactions; 
and their ability to regenerate and recover following impacts. 
The characteristics also include within and across-generation 
plastic responses and genetic variability in traits that facilitate 
regeneration and recovery. 

Adaptive capacity
Adaptive capacity describes the degree to which a species, 
habitat or ecosystem is able to reduce or avoid the adverse 
effects of climate change through dispersal to and colonization 
of more climatically suitable areas, plastic ecological responses, 
and/or evolutionary responses (Williams et al., 2008; Nicotra 
et al., 2015; Beever et al., 2016).

Figure 4. Five key parameters for describing vulnerability of biodiversity to climate change. An example of a specific use 
for assessing an ecosystem is: “Vulnerability OF temperate forests IN North America TO declines in carbon storage FROM 
temperature and precipitation changes and pine bark beetle damage WITHIN the next 50 years”. An example of specific 
use for assessing species is: “Vulnerability OF tuna species IN the southern Atlantic TO range shifts and population declines 
FROM rising ocean temperatures WITHIN the next 10 years”. 

ULNERABILITY  

Fig 4 

2. Setting the scene
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Hazard
The magnitude of a natural or human-induced climate-related 
physical event or change that may cause impacts on species. 

Impact
The expected or observed loss or gain in species, habitat or 
ecosystems due to a hazardous event.

Risk
The potential consequences to species of future climate change. 
Risk is often represented as probability of occurrence of 
hazardous events or trends multiplied by the impacts if these 
events or trends were to occur. 

2.2	 Climate change vulnerability 
assessment approaches

Here we discuss the approaches commonly used to carry out 
CCVAs. Understanding the origins, principles, advantages 
and limitations of these approaches is important both for 
those needing to select approaches and the methods used to 
apply them, as well as those wishing to use CCVA outputs 
that others have generated. The methods used to date to assess 
species’ CCVA can be classified into three main approaches: 
1) correlative; 2) mechanistic; and 3) trait-based. These 
approaches are summarized in Figure 5, based on a review 
carried out by Pacifici et al. (2015), which should be referred to 
for further details and examples. The figure includes examples 
of the application of each approach, as well as combinations of 
more than one approach.

2.2.1 Correlative approaches

The use of correlative models, also referred to as niche-based 
or species distribution models, for climate change vulnerability 
assessment began around the early 1990s (e.g., Busby, 1991; 
Walker & Cocks, 1991; Carpenter et al., 1993). They use 
correlations between each species’ distribution ranges and 
its historical climate to estimate its climatic requirements, or 
climatic niche (e.g., Hutchinson, 1957). Using this information 
and projections of future climates, these models predict the 
potential geographic areas of suitable climate for the species 
in the future (e.g., Pearson & Dawson, 2003; Beale et al., 
2008). Consideration of whether species will be able to disperse 
to and colonize such areas, as well as whether biotic and 
abiotic conditions are suitable for them, are important when 
interpreting whether areas predicted to be of potentially suitable 
future climate could become part of species’ future distribution 
ranges. Species’ climate change vulnerability is typically 
inferred from predicted difference in range size and location, 
and occasionally from changes in degree of fragmentation (e.g., 
Garcia et al., 2014b).

Correlative models’ assumption that species’ distributions 
are in equilibrium with their climates is problematic, since 

this ignores the roles that inter-specific interactions, habitats, 
geographic barriers and humans play in shaping current 
distributions (Guisan & Thuiller, 2005). Correlative approaches 
perform poorly for narrowly-distributed species (which are 
typically those most threatened and of greatest conservation 
concern) both because their distributions are less likely to be 
constrained by climate pressures, and because the models’ 
statistical requirements for many spatially independent 
occurrence records cannot be met (e.g., Stockwell & Peterson, 
2002; Platts et al., 2014). Correlative methods typically ignore 
the many mechanisms of climate change impacts beyond 
shifting climatic suitability (e.g., loss of resource or mutualist 
species) that have been shown to be important causes of climate-
change related population declines (e.g., Ockendon et al., 2014). 
In addition, they do not consider the biological traits that are 
known to play an important role in shaping species’ sensitivity 
and adaptive capacity to climate change (e.g., Jiguet et al., 2007; 
Dawson et al., 2011). Further discussion on the caveats and 
limitations of correlative approaches is found in Heikkinen et 
al. (2006), Araújo et al. (2012) and Franklin (2013).

Despite these drawbacks, correlative methods have been 
shown to perform well in predicting observed climate change-
driven range shifts (e.g., Chen et al., 2011; Dobrowski et al., 
2011; Morelli et al., 2012; Smith et al., 2013) and changes in 

Figure 5. Summary of the three main CCVA approaches 
(1–3) and the six categories their combinations create, as 
well as published examples of their use.

1.	Correlative: e.g., Thuiller et al., 2005; Huntley et al., 2008a; 
Araújo et al., 2011

2.	Trait-based: e.g., Chin et al., 2010; Young et al., 2011; Foden et 
al., 2013

3.	Mechanistic: e.g., Kearney & Porter, 2009; Monahan, 2009
4.	Correlative-Trait-based: e.g., Schloss et al., 2012; Warren et al., 

2013; Garcia et al., 2014a
5.	Correlative-Mechanistic: e.g., Anderson et al., 2009; Midgley et 

al., 2010; Aiello-Lammens et al., 2011; Laurance et al., 2012
6.	Correlative-Trait-Mechanistic: e.g., Thomas et al., 2011; Keith 

et al., 2014

1
Correlative

3
Mechanistic 

2
Trait-based

4

6

5
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population abundance (e.g., Gregory et al., 2009). They do not 
require information on species biology as input data, and they 
deliver spatially explicit outputs that are informative for spatial 
conservation planning (e.g., Hannah et al., 2002; Araújo et al., 
2004; Phillips et al., 2008; Araújo et al., 2011). Tools with user-
friendly interfaces such as MaxEnt (e.g., Phillips et al., 2004; 
Phillips & Dudı, 2008), BIOMOD (e.g., Thuiller, 2003) and 
the Wallace Initiative (e.g., Warren et al., 2013) are available 
to apply several correlative methods. They can also be applied 
to assess impacts of climate change on species across networks 
of sites identified for conserving particular species, such as 
protected areas or Key Biodiversity Areas, by projecting species 
distribution models onto individual climates for each site in a 
network (e.g., Hole et al., 2009; Bagchi et al., 2013). Appendix 
Table A provides a summary of the types of correlative methods 
available for CCVA, examples of their use, as well as the tools 
available for their application. Pearson (2007) provides an 
excellent and accessible reference for understanding and using 
correlative methods, including for CCVA. 

2.2.2 Trait-based approaches 

Trait-based vulnerability assessment approaches (TVAs) use 
species’ biological characteristics to estimate their sensitivity 
and adaptive capacity to climate change, typically combining 
these with estimates of the extent of their exposure to climate 
changes (e.g., Williams et al. 2008, Young et al. 2012, Foden 
et al. 2013a, Smith et al. 2016). These methods require biological 
data and typically also broad-scale distribution information 
(e.g., a distribution range map). Biological knowledge of the 
focal taxonomic group is required to parameterize how, and 
to what extent, individual traits relate to climate change 
vulnerability, as well as to evaluate each species according to 
their possession of these traits. Exposure may be estimated 
using GIS-based modelling (e.g., Foden et al., 2013), user-
friendly interfaces presenting generalized climate projections 
(e.g., http://www.climatewizard.org/), any number of statistical 
programs or languages (e.g., R, Python, MatLAB), or expert 
judgment (e.g., Chin et al., 2010). Where species’ distribution 
information is lacking or where simplistic or preliminary 
assessments alone are required, exposure assessments are 
sometimes omitted (e.g., McNamara, 2010; Advani, 2014). 
Sensitivity, adaptive capacity and preferably exposure scores are 
then combined to assign species to a category of vulnerability. 
Appendix Table B provides a summary of the types of trait-
based methods available for CCVA, examples of their use, as 
well as the tools available for their application.

Trait-based approaches are most widely used to inform 
prioritization of species for conservation interventions. Because 
they are unable to predict species’ suitable future climate space, 
they provide more limited support for spatial conservation 
planning. Further, the precise vulnerability thresholds 
associated with each trait are seldom known, requiring 
estimation or selection of arbitrary relative values (e.g., Foden 
et al., 2013; Garcia et al., 2014a). There is little consensus 

on approaches for combining trait scores to assess exposure, 
sensitivity or adaptive capacity scores, nor for combining these 
into overall CCVA scores, and many methods simply weight 
traits equally (e.g., Laidre et al., 2008; Foden et al., 2013) even 
though some characteristics are likely to be more important 
than others in determining climate change vulnerability (e.g., 
Pacifici et al., 2015). Because many traits tend to be taxon-
group specific, most methods don’t allow direct comparison of 
vulnerability among taxonomic groups. 

Although TVAs were amongst the earliest proposed approaches 
(e.g., Herman & Scott, 1994), they have only gained 
prominence recently (e.g., Williams et al., 2008; Graham et al., 
2011; Young et al., 2015) and hence remain largely unvalidated. 
They are becoming increasingly used by conservation 
organizations and management agencies, however (e.g., Bagne 
et al., 2011; Glick et al., 2011; Carr et al., 2013; Foden et al., 
2013; Johnson, 2014; Young et al., 2015; Hare et al., 2016), since 
they allow relatively rapid vulnerability assessment for multiple 
species, do not necessarily require modelling expertise (e.g., 
Pacifici et al., 2015), and because their involvement of experts 
and easily understood and applied methods promote buy-in and 
use. They allow consideration of many mechanisms of climate 
change impacts on species, and their consideration of species’ 
biological traits meets the growing recognition of the need to 
consider species’ individualistic responses to climate change. 
Finally, they are applicable to all species, irrespective of their 
distribution size; this and their relatively low requirements for 
detailed distribution information mean that they can be widely 
applied to all members of entire taxonomic groups, making them 
particularly useful for broad-scale conservation assessments. 

2.2.3 Mechanistic approaches

Mechanistic or process-based models predict species’ likely 
responses to changing environmental conditions by explicitly 
incorporating known biological processes, thresholds and 

David Bickford with a Fordonia Mangrove Snake (Fordonia 
leucobalia). This species is found almost exclusively in mangroves, 
which are vulnerable to inundation when sea levels rise faster than 
they are able to cope with. Countless other species will also be 
affected. © David Bickford

2. Setting the scene

http://www.climatewizard.org/
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interactions (e.g., Morin & Thuiller, 2009). Mechanistic 
niche models use estimates of species’ physiological tolerances, 
typically from laboratory and field observations (e.g., 
Jenouvrier et al., 2009; Radchuk et al., 2013; Overgaard et al., 
2014) or from energy balance equations (e.g., Molnár et al., 
2010; Huey et al., 2012), to estimate niche parameters. This 
provides an approximation of species’ potential or fundamental 
niche, thereby avoiding the limitation faced by correlational 
approaches due to their assumption that species are at 
equilibrium with their environments. 

Mechanistic models are able to accommodate a broad range 
of climate change impact mechanisms including changes 
in resource availability (e.g., Hoffmann et al., 2010), land 
use (e.g., Mantyka-Pringle et al., 2014; Martin et al., 2015), 
predation, competition (e.g., Urban et al., 2012), stream flow 
(e.g., Crozier et al., 2008) and changes in habitat suitability (e.g., 
Hunter et al., 2010; Aiello-Lammens et al., 2011; Forrest et al., 
2012). They can include species-specific characteristics such as 
dispersal distances (e.g., Kearney et al., 2008; Keith et al., 2008), 
longevity, fecundity (e.g., Saltz et al., 2006), density dependence 
(e.g., Leroux et al., 2013), morphological factors, genetic 
evolution, phenotypic plasticity (e.g., Chevin et al., 2010; Huey 
et al., 2012) and demographic stochasticity (e.g., Hunter et al., 
2010). They can also include interactions between mechanisms 
such as land use change and climate change (Mantyka-Pringle 
et al., 2014, 2016). Other mechanistic models consider the 
changes in vegetation distribution and dynamics using groups 
of species (e.g., plant functional types), based on bioclimatic 
and physiological parameters (e.g., Morin & Thuiller, 2009). 
Appendix Table C provides a summary of the types of 
mechanistic methods available for CCVA, examples of their 
use, as well as the tools available for their application.

Key strengths of mechanistic models include their ability to 
inform a mechanistic understanding of the processes driving 
climate change vulnerability (Kearney & Porter, 2009), 
provide a credible way to forecast response to novel situations 
(e.g. extrapolate rather than interpolate) and form the basis for 
identifying responses implications for management actions 
(e.g., Fordham et al., 2013a; Mantyka-Pringle et al., 2016). 
They include a range of climate change impact mechanisms, 
consider species’ individual biological traits and may be applied 
to narrowly distributed species. However, their generally 
intensive requirements for physiological, demographic and 
distribution knowledge and data (Morin & Thuiller, 2009), and 
hence their relative costliness (Kearney & Porter, 2009; Chevin 
et al., 2010), is a significant limiting factor in their application 
which, to date, is restricted to only a few well-studied species.

2.2.4 Combined approaches

The approaches discussed above are those most commonly 
used in vulnerability assessments. However, there is a growing 
consensus that combining approaches may yield models 
that capture the advantages of each. Here we briefly discuss 

combinations of the approaches that have been applied to 
date, noting that, to our knowledge, no studies of combined 
trait-based and mechanistic approaches have been published. 
Appendix Table D provides a summary of the types of 
combination approach methods available for CCVA, examples 
of their use, as well as the tools available for their application.

Correlative-TVA approaches
Correlative and trait-based approaches are typically combined in 
two ways. In the first, traits are used to create more biologically 
realistic correlative models, and data such as dispersal distances, 
generation lengths and habitat preferences are used to refine 
estimates of species’ exposure and/or range dynamics. Schloss 
et al., (2012), for example, used natal dispersal and generation 
length to predict the future distribution of terrestrial mammals 
in the Western Hemisphere under climate and land-use changes, 
and Warren et al., (2013) have applied a similar approach to 
a range of taxonomic groups. Prevalence of certain traits has 
also been used to identify species and regions where correlative 
models may under- or over-predict climate change vulnerability 
(e.g., Garcia et al., 2014a). In the second approach, correlative 
model results may be included in trait-based approaches to 
contribute to overall measures of vulnerability (e.g., Young et 
al., 2012). By integrating exposure calculated with correlative 
models, the indices derived from TVAs acquire more reliable 
estimates of the risks posed by climate change, accounting for 
both intrinsic and extrinsic factors (Willis et al., 2015). 

Correlative-Mechanistic approaches
Outputs of correlative models may be used to project the location 
of a species’ suitable climate space in various time steps into 
the future, while mechanistic models project resulting impacts 
on habitat suitability and population dynamics resulting from 
these changes across landscapes (Keith et al., 2008; Anderson 
et al., 2009; Midgley et al., 2010; Aiello-Lammens et al., 
2011). Some studies have integrated life-history characteristics 
into models to produce more accurate projections of species’ 
responses to climate change (e.g., Midgley et al., 2010) while 
others have additionally included inter-species interactions 
(e.g., Harris et al., 2012; Fordham et al., 2013).

Criterion-based methods: a combined Correlative-
Mechanistic-Trait approach
Thomas et al. (2010) used combinations of species’ observed 
changes (e.g., recorded population declines), projected changes 
(potentially from correlative and/or mechanistic models) and 
life history traits (e.g., generation length) to estimate climate 
change vulnerability of a range of UK species. Similar to 
the IUCN Red List, the various information sources were 
combined through a criterion-based system that classified 
species into vulnerability categories based on quantitative 
thresholds. Such criterion-based methods can account for 
several factors known to affect species’ relative extinction risk 
(e.g., decline in extent of occurrence, reduction in population 
size), and are able to accommodate species for which different 
amounts of data are available. 
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Criteria that predict vulnerability to climate change can overlap 
extensively with those used in IUCN Red List assessments. 
Pearson et al. (2014) found that characteristics predisposing a 
selection of North American herpetofauna to climate change 
vulnerability are also included in the information already 
compiled to assess species’ extinction risk through the IUCN 
Red List categories and criteria. In related studies, Pearson et al. 
(2014), Stanton et al. (2015) and Keith et al. (2014) showed that 
IUCN Red List extinction risk category is a good predictor of 
climate change vulnerability for six groups of North American 
reptiles and salamanders, and for an Australian frog species. 
Akçakaya et al., (2014) concluded that these studies suggest that 
IUCN Red List assessments, if sufficiently frequently updated, 
reflect extinction risk owing to climate change vulnerability, 
and can provide decades of warning time before species go 
extinct. Further research is needed to extend the approach to 
other taxonomic groups. For IUCN Red List assessments to 
give results comparable across taxonomic groups, it is essential 
that the thresholds and time periods used in the criteria are not 
altered (Akçakaya et al., 2006), and the guidelines developed 
by IUCN are followed (IUCN Standards and Petitions 
Subcommittee, 2014).

2.3	 Metrics for estimating climate change 
vulnerability

The three approaches produce different measures or metrics of 
climate change vulnerability as outlined in Figure 6. These are 
discussed in Pacifici et al. (2015) and highlighted below.

2.3.1 Vulnerability indices and other relative 
scoring systems 

Vulnerability indices can be derived from the outputs of all 
approaches, integrating across multiple indicators or metrics. 
They may be a direct output (e.g., for most trait- and criterion-

based approaches) or they may be developed by classifying any 
of the other quantitative measures of vulnerability (i.e., range 
changes, population changes or extinction probabilities) into, 
for example, categories of high, medium and low vulnerability. 
Although these measures are typically unitless, combine 
different sorts of information and are often subjective, they 
are easily communicated to high-level decision-makers and the 
lay public.

2.3.2 Range changes

Predictions of changes in suitable climate space are products of 
both correlative and mechanistic niche models and are used to 
infer potential distribution changes based on climate suitability 
for focal species within a landscape, or at one or more sites. 
Species’ ability to disperse to, colonize and survive in the newly 
climatically suitable areas are important considerations when 
interpreting and using such metrics, and explicit inclusion 
of these can provide more robust predictions. Metrics of 
distribution change typically include the change in overall 
range size (calculated by subtracting future potential range 
size from current range size, and adding future potential range 
gained; (Thuiller et al., 2011; Schloss et al., 2012), the overlap 
(and potentially distance) between current and future ranges, 
and the rate at which species’ climate space is projected to shift 
across the landscape.

2.3.4 Population changes 

Population changes, often in a detailed spatial context, can 
be inferred from projected changes in suitable habitat that are 
estimated by correlative and mechanistic models (Nenzén & 
Araújo, 2011). It is important to consider, however, that species 
may be unevenly distributed within their ranges, and hence the 
relationship between projected habitat loss and range change 
may not be linear. Population changes may also be explicitly 
projected by using past trends, climate and other driver data as 
input to mechanistic models (Jenouvrier et al., 2009; Regehr 
et al., 2010), which consider the effects of changes in model 
parameters (e.g., distribution patterns, life history), and usually 
combine forecasts from different scenarios to estimate the 
magnitude of the projected reduction. 

2.3.5 Extinction probabilities 

Extinction probabilities can be derived from the use of 
mechanistic models (Hunter et al., 2010; Thompson et al., 
2012) evolutionary models (Vedder et al., 2013) or Population 
Viability Analyses (PVAs) when the life-history characteristics 
of populations are known (Maschinski et al., 2006; Jenouvrier 
et al., 2009). For calculating extinction probabilities within a 
given time interval, population vital rates are usually coupled 
to changes in environmental parameters (e.g., temperature, 
precipitation, CO2 levels). 

Figure 6. The four main metrics or types of information 
derived from CCVA and the approaches that produce 
them. The metrics increase in detail from left to right.
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The Haleakalā Silversword (Argyroxiphium sandwicense subsp. macrocephalum) grows on volcanos in the Hawaiian chain of islands. Having 
survived near extinction from grazing and human depredation, it now faces climate change driven declines in rainfall, as well as rising 
temperatures which affect the inversion layer over the mountains, further reducing moisture. © Paul Krushelnycky
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3.1	 Defining your goal

Clear goals facilitate the establishment of well-structured 
objectives and promote clear, verifiable CCVA outputs and 
effective conservation impacts. Being clear about the needed 
outcomes before initiating research will help ensure: i) that 
the outputs of the analysis will fulfil needs; ii) that assessments 
will not need to be repeated soon; iii) that the project can be 
completed in a reasonable amount of time without cost overruns; 
and iv) that the results will influence the intended audience. We 
reiterate the importance, when setting goals, of distinguishing 
between CCVA (which this document describes) and adaptation 
planning (which is not this document’s focus). Climate change 
vulnerability assessments are carried out to help identify what 
is at risk and why, while climate change adaptation planning, 
which is informed by CCVA information, focuses on how to 
respond to these risks.

A well-defined goal answers the following questions: 
1. Why are you carrying out this CCVA?
2. Who is your audience?
3. Which decisions do you hope to influence using the results?

3.1.1 Why are you carrying out this CCVA?

Start by answering this basic question. Knowing in a general 
sense the achievements anticipated by the vulnerability 
assessment will then guide answers to other questions about the 
audience addressed and the decisions to be influenced, as well 
as the specific objectives that will further define the project. 
Examples of goals you may have for your CCVA are:
•	 To determine the degree of vulnerability to climate change 

of one or more species in a particular region or across their 
entire ranges. 

•	 To perform an academic exercise.
•	 To provide input into a specific adaptation planning process 

(designed to address a single species, a suite of species, a 
geographic area, or something else) that is either underway 
or planned.

•	 To obtain quantitative information about a species’ response 
to a changing climate as input into a demographic model. 

•	 To use a vulnerability assessment as a means to learn more 
about how climate change might influence species of interest 
to a particular group of people. 

Regardless, answering this basic “why” question will help 
address the subsequent questions, which in turn will guide you 
in choosing an appropriate methodology for your assessment.

3.1.2 Who is your audience?

Vulnerability assessments may be targeted at one or more 
audiences, including policymakers, land/resource managers, 
scientists or the general public. Audiences can vary widely in 
their objectives, as well as in their management and decision-
making processes, and these differences can affect the specifics 
of the vulnerability assessment, including the choice of 
methods, level of needed rigor, the reporting styles and the 
objectives of the assessment itself. For example, language 
used to address the public will be less technical than that 
used to address the scientific community. Similarly, resource 
managers and policymakers will require information to be 
communicated in a language that is directly relevant to the 
contexts (e.g., biological, legislative) in which they work. 

3.1.3 Which decisions do you hope to 
influence using the results?

Understanding how the audience for an assessment engages 
in planning and management processes is key to developing 
the objectives of a vulnerability assessment. The results of an 
assessment are more likely to have an impact if they align with 
the management needs of the intended audience. For example, 
at the local level, managers might develop site conservation 
plans for the planning, implementation and monitoring of 
management actions at a single site. By contrast, government 
entities such as a national parks agency may develop 
management plans for a network of sites. A subnational 
government may be interested in prioritizing species that 
occur within their jurisdiction for management consideration. 
In each situation, the management process is different and 
requires vulnerability assessments with different objectives. 

3.2	 Defining your objectives

Objectives describe the one or more specific action steps needed 
to achieve your CCVA goal. We describe six broad CCVA 
objective categories. 

To identify, for specified taxonomic groups, regions AND 
time frames:
•	 Which species are most vulnerable
•	 How much – how vulnerable species are (i.e., the magnitude 

of vulnerability)
•	 Why species are vulnerable
•	 Where species are vulnerable

3. Setting Climate Change Vulnerability 
Assessment goals and objectives
Bruce E. Young, Tara Martin, James Watson, Wendy B. Foden, Stephen Williams and Brett Scheffers
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•	 When species become vulnerable
•	 What’s missing (i.e., what data and information are needed 

to be able to carry out a good CCVA).

Scale is a fundamental consideration in ecological and 
conservation science (Levin, 1992). Patterns exist at multiple 
levels of organization across a wide range of taxonomic, spatial 
and temporal scales. Identifying appropriate scales of focus 
for a given CCVA and defining objectives in terms of each are 
critically important steps in setting clear, effective objectives 
since they will directly influence the approaches, methods and 
resources required to address them.

3.2.1 Selecting a taxonomic focus

CCVAs can be carried out at species, subspecies, 
metapopulation, population or individual levels, as well as 
at higher taxonomic levels (e.g., genera) or for species from 
multiple taxonomic groups (e.g., all vertebrate species occurring 
in a particular area or belonging to a specific functional group 
or guild). Most assessments, however, focus at the species level 
or below since these entities tend to (though do not always) 
have relatively consistent biological characteristics (e.g., 
climatic tolerances and dispersal abilities). We encourage users, 
as far as possible, to make use of widely accepted taxonomic 
classification systems (e.g., see the IUCN Red List taxonomic 
standards and references1) in order to maximize applicability 
and comparability of outputs.

A checklist is provided below to assist practitioners in setting 
clearly defined objectives (Table 1). Examples of objectives, 
grouped according to their taxonomic focus, spatial extent and 
objective categories, are shown in Table 2. 

3.2.2 Selecting a spatial focus

An assessment’s spatial focus may be a taxon’s range (e.g., the 
entire distribution of a species, subspecies or subpopulation), a 
site (e.g., an individual protected area or discrete area containing 
a subpopulation of a species, such as a Key Biodiversity Area) 
or a network of such sites, a political or administrative unit 
such as a state or nation, or a larger spatial scale (including a 
land- or sea-scape, region, continent or even the world). Some 
CCVA approaches and methods have specific requirements for 
setting spatial foci, so a more detailed discussion of selection of 
CCVA focal extent is included in Section 5.1.1 (Spatial extent 
and resolution).

3.2.3 Selecting a timeframe

Time frames of assessments are most often shaped by users’ 
specific interests or needs (e.g., a 10-year planning horizon for 
site manager) in conjunction with the following important 
considerations. For taxon-focused assessments, species’ 

1	 http://www.iucnredlist.org/technical-documents/information-sources-
and-quality#standards 

generation lengths should be an important consideration. 
For shorter-lived species, shorter projection intervals are more 
appropriate (e.g., as per the IUCN Red List guidelines, three 
generations, but with a minimum of 10 years), while for 
longer-lived species, longer projection intervals are needed to 
adequately consider vulnerability (e.g., three generations, but 
to a maximum of 100 years). 

Uncertainty in climate projections is considerably higher further 
into the future, so the range of plausible results increases over 
very long time frames (e.g., >50 years). However, confidence in 
projecting whether a species is vulnerable is most likely going 
to increase with time for many species. Because projections 
are calculated as means, those for shorter time periods (e.g., 
<20 years) are more prone to bias by extreme values. In the 
IPCC’s latest (2013) projections, for example, 20-year intervals 
are reflected, namely 2016–35 (2025 mean), 2046–65 (2055 
mean) and 2081–2100 (2090 mean). While obtaining detailed 
model output and compiling projections for custom periods is 
possible, this requires considerable processing and appropriate 
expertise. Using the readily available means does, however, 
limit the time frames that can be considered when computing 
the CCVA. 

Table 1. Checklist to aid identification of clear, quantitative objects.

i) Select an objective category:

Which? How 
much?

Why? Where? When? What’s 
missing?

ii) Select a taxonomic focus (for example):

Population Species One taxonomic 
group

Multiple taxonomic 
groups

Select a spatial focus:

iii) Taxon’s range Site Network of 
sites

Larger spatial scales

iv) Select a time frame (for example):

100 years 50 years 20 years 5 years Present

A Rhacophorus angulorostris frog from Mt. Kinabalu, Borneo. These 
frogs require clean, fast-flowing montane rivers to breed so any 
disruption to typical seasonal rainfall can have pronounced effects 
on reproductive success. Conditions on the mountains are becoming 
drier and hotter and a protracted drought could spell disaster for this 
and many other amphibian species. © David Bickford
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Table 2. Heuristic examples of CCVA objectives, grouped according to six objective categories, and their scope of focus.

Examples of CCVA objectives. To identify, for specified taxonomic groups, regions and time frames:

Taxonomic focus

Which? •	 Which species (e.g., birds, amphibians, plants) are most and least vulnerable to climate change across their global distribution 
ranges

•	 Which of the organisms (e.g., marine fishes, rainforest seed-dispersers, migratory animals) are most and least vulnerable to 
climate change

•	 Which population of a threatened species is most and least climate change vulnerable

How much? •	 How much is the focal species’ suitable climate space likely to contract or expand over the next 10/25/50/100 years
•	 How far and fast will the species need to move to track their climate space by 2050

Why? •	 Which impact mechanisms will the species face
•	 Is the species sensitive, exposed and/or poorly adaptive to direct/indirect climate change
•	 Which components of the changing climate pose the greatest risk to the focal species (e.g., maximum temperatures vs. water 

availability in the dry season, increased discrete events vs. long-term continuous events)

Where? •	 Which areas will be climatically suitable for the focal species in 10/25/50 years’ time
•	 Which regions or countries contain species most vulnerable to climate change 
•	 Whether the most climate change vulnerable species occur in areas where humans are also most vulnerable to climate change

When? •	 Whether climate change is likely to affect the species within the next 10 years
•	 When the climate within a specific section of the species’ range will no longer be suitable 

What’s 
missing?

•	 Which are the key uncertainties that require additional data collection and/or research for better assessing vulnerability to 
climate change of the species

Spatial focus on multiple species at a single site

Which? •	 Which species currently occurring in a protected area are most and least vulnerable to climate change
•	 For which currently occurring species the site will remain or become climatically suitable in 10/25/50 years’ time
•	 For which species not currently occurring at the site it may become suitable in 10/25/50 years’ time

How much? •	 What is the predicted turnover (i.e., loss and gain) of species at the site by 2050

Why? •	 Which aspects of vulnerability (i.e., sensitivity, exposure and/or poor adaptive capacity) are most prevalent for the species at 
the site

•	 Which aspects of projected climate change play the greatest role in driving climate change risk for species at the site
•	 Which biological characteristics of species at the site are enhancing and/or reducing their resilience and/or adaptive capacity
•	 Which biological characteristics of species at the site are enhancing and/or reducing their resilience and/or adaptive capacity

Where? •	 Which areas within the site are expected to change the least and therefore provide potential refugia for species
•	 Whether areas around the site could be suitable as corridors or stepping stones for species with shifting ranges

When? •	 When the site will no longer be climatically suitable for its flagship species
•	 Will the site remain suitable for its focal species in 10/25/50 years’ time

What’s 
missing?

•	 Which are the key uncertainties that require data collection and/or research for better assessing vulnerability to climate 
change of the species at the site

Spatial focus on multiple species occurring in a network of sites or at larger spatial scales

Which? •	 Which of the protected areas in the region/country currently contain the greatest and lowest numbers of climate change 
vulnerable species

•	 Which sites are likely to undergo greatest and least turnover in species due to climate change
•	 At which sites are local climates projected to remain suitable for the species currently occurring there
•	 Which species currently not occurring at the site may potentially colonise it owing to the climate becoming suitable in future
•	 For which sites and species is improved connectivity between sites most important

How much? •	 How much extinction risk of focal species will be increased by climate change by 2030
•	 How many species are predicted to lose all suitable climate space within the site network
•	 How much of focal species’ future distributions are contained in the current protected area network

Why? •	 Which aspects of projected climate change play the greatest role in driving climate change vulnerability across the landscape
•	 Which aspects of vulnerability (i.e., sensitivity, exposure and/or poor adaptive capacity) are most prevalent for the species
•	 How many and which species face extrinsic and intrinsic barriers to tracking their shifting climates

Where? •	 Where will the climate be suitable for species currently occurring in the site network or region in 10/25/50 years’ time
•	 The location of potential refugia and/or corridors for species range shifts
•	 Which areas are most important to add to the conservation network

When? •	 When will the greatest shifts in species composition across the protected area network occur
•	 When is a species likely to lose all suitable climate within the site network

What’s missing? •	 Which data and/or research is of greatest priority for better assessing vulnerability to climate change of species in the site network

3. Setting climate change vulnerability assessment goals and objectives
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Koalas (Phascolarctos cinereus) only feed on a few species of eucalyptus trees, choosing those whose leaves contain less tannin and more 
protein. Increasing CO2 levels cause increases in leaf tannin levels while decreasing protein, thus lowering the nutritional value of the 
leaves. In addition, during very hot and dry periods Koalas descend from the trees searching for water, which puts them at greater risk from 
predators. © Flickr - Erik K. Veland
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4.1	 Steps for selecting your CCVA 
approach and methods

After the essential first step of setting clear CCVA goals 
and objectives, conservation practitioners face a range of 
considerations for choosing how to proceed toward obtaining 
the results needed to meet them. This section identifies these 
and provides steps to systematically guide users through the 
necessary decisions (see Figure 7). 

Step 1. Identify and evaluate existing CCVAs

Growing numbers of CCVA studies have been conducted to 
date and many are published in academic and management-

4. Selecting and evaluating CCVA 
approaches and methods
Wendy B. Foden, Raquel A. Garcia, Philip Platts, Jamie Carr, Ary Hoffmann and Piero Visconti

Figure 7. Conceptual steps for CCVA 
of species, including setting objectives, 
identifying and evaluating existing 
assessments, carrying out new ones 
and interpreting their results. Resources 
include data, time and expertise.

related literature, as well as online. Before embarking on a 
CCVA, we therefore recommend carrying out a literature search 
to establish whether your focal species, site(s) or region(s) has/
have already been assessed, if the assessments are accessible, and 
whether they are suitable for your purpose. Even if they don’t 
prove suitable, such assessments may still provide information 
about previously unknown data and expertise, as well as on how 
region- or context-specific challenges were addressed. Table 3 
(over) lists examples of CCVA assessments that are generally 
freely available. For studies where only high-level syntheses of 
results are publicly available and assessors require more detailed 
(e.g., per species) results, we recommend contacting authors to 
request access to species-level results and data. On the same 
note, we urge assessors to make their own results and, where 
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Table 3. Examples of species-level open-access CCVA studies and/or results that may be useful for meeting users’ goals.

CCVA Coverage Description Reference

African Birds Maps of species’ projected ranges by 2025, 2055 and 
2085, (correlative approach)

BirdLife International and Durham University: http://www.
africa-climate-exchange.org/maps/ 

Global birds, amphibians, 
warm-water reef-building 
corals

Vulnerability scores for each species (highly 
vulnerable/less vulnerable); maps of areas of high 
concentrations of highly vulnerable species (trait-
based approach)

(Foden et al., 2013). Scores available in appendices at: 
http://www.plosone.org/article/
info%3Adoi%2F10.1371%2Fjournal.pone.0065427; Trait data 
available upon request to IUCN.

African Albertine Rift 
mammals, reptiles, 
freshwater fishes, some 
plants

Vulnerability scores for each species (highly 
vulnerable/less vulnerable); maps of areas of high 
concentrations of highly vulnerable species (trait-
based approach)

(Carr et al., 2013). Scores available in appendices: http://
www.traffic.org/non-traffic/SSC-OP-048.pdf 

Australian birds Rankings of species’ sensitivities, adaptive capacities 
(trait-based) and maps of projected exposure 
(correlative)

(Garnett et al., 2013) http://www.nccarf.edu.au/sites/default/
files/attached_files_publications/Garnett_2013_Climate_
change_adaptation_strategies_for_Australian_birds.pdf 

Arctic and sub-Arctic 
mammals

Vulnerability scores (trait-based) (Laidre et al., 2008) http://www.esajournals.org/doi/
pdf/10.1890/06-0546.1 

European birds Detailed species’ accounts and maps of species’ 
current and projected (late 21st century) ranges 
(correlative approach)

(Huntley et al., 2007) http://www.lynxeds.com/product/
climatic-atlas-european-breeding-birds 

possible, their data publicly available in useable formats for use 
on other CCVAs. 

This step is intended to guide evaluation of the suitability and 
rigorousness of CCVAs both by those needing to use the results 
for conservation planning and more broadly, for example 
during peer-review. We outline a series of important guiding 
questions (see Figure 8), and since several of these overlap with 
the steps needed to develop and interpret CCVAs, we refer 
users to those sections. The important first step is to identify 
the CCVA authors’ objectives, which may be explicitly stated, 
implicit, or sometimes difficult to determine. Classifying these 
according to the six objective categories outlined in Section 3.2 
(Defining Your Objectives) and specifying the taxonomic and 
regional focus and time frame focus is advisable, since each of 
these must be applicable. 

If the study’s objectives support users’ own goal(s) then the next 
step is to ensure that appropriate methodological approach(es) 
have been used (i.e., correlative, trait-based, mechanistic, or 
combined approaches). This, and the subsequent step of ensuring 
the specific methods used to apply the approach are appropriate, 
are described in Steps 2–5 below. Users should then explore 
whether these have been responsibly applied, which includes 
evaluating the species data, climate data, bioclimatic variables 
and spatial and temporal scales used (Section 5 (Using CCVAs 
and Interpreting their Results)). Next, users should consider 
how the study has dealt with uncertainty, including from 
species and climate data, from the inherent characteristics of 
selected approach(es) and method(s) (Section 6 (Understanding 
and Working with Uncertainty)). Finally, although this has 
been rare to date, some CCVA authors endeavour to test or 
validate their assessments based on observed species changes, 
including population changes (e.g., Foden et al., 2007; Gregory 
et al., 2009; Sinervo et al., 2010) or range changes (e.g., 

Mitikka et al., 2007; Tingley et al., 2009, 2012). Validation can 
clearly boost confidence in original findings (see Section 6.7 
(CCVA validation)). In the more common case of unvalidated 
results, users may wish to examine population data and any 
observed range shifts to establish whether these data support or 
contradict the assessments. 

These steps are intended to provide generalized guidance to help 
users evaluate suitability-for-use of existing CCVA assessments. 
Recognizing the value and resource-saving that sound, ‘ready-
to-use’ assessments can provide for the conservation community, 
we strongly encourage those carrying out CCVAs to make their 
data, methods and results publicly available.

Emperor Penguins (Aptenodytes forsteri) live most of their lives on sea 
ice in Antarctica. Reductions of sea ice due to rising temperatures 
have already been recorded and look set to continue, threatening 
their habitat. Reduced sea ice also correlates with reduced krill 
populations, which will have negative consequences for all species 
higher up the food chain including Emperor Penguins. © Antarctic 
Legacy of South Africa

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0065427
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0065427
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Figure 8. Steps for evaluating the 
suitability of existing CCVA studies 
for use in adaptation planning or for 
publication during peer-review.

Step 2. Identify CCVA approaches that meet 
your objectives

Assuming there are no existing studies that meet your objectives, 
the next step is to design your own CCVA. With objectives 
clearly set, you will now determine which CCVA approaches 
can deliver the results needed to meet them. We described 
the types of information or metrics produced by each of the 
three dominant CCVA approaches in Section 2.3 (Metrics for 
estimating climate change vulnerability) and Figure 6 and 
elaborate on this here. Table 4 provides examples of CCVA 
objectives (by type) and the approaches that can be used to 
meet them. At this stage, all potentially applicable approaches 
should be noted since subsequent evaluation of input resources 
(Step 3) may preclude the use of some approaches, and the use 
of multiple approaches and combined approaches should be 
considered where feasible (discussed in more detail in Step 5).

In broad summary, well-calibrated mechanistic models of 
sufficient complexity (that is, that simulate all relevant and 

biological and ecological processes) provide arguably the most 
robust answer to any of the questions above, as they relax all 
of the assumptions of correlative models while maintaining the 
rigour and objectivity of data-driven statistical models (Fordham 
et al., 2013b, but see Buckley, 2010; Olsson & Jönsson, 2014). 
Where insufficient empirical data exist to build a mechanistic 
model, researchers can turn to expert elicitation to fill these gaps 
(Martin et al., 2012; Mantyka-Pringle et al., 2014; Martin et 
al., 2015). In other cases where there is an absence of sufficient 
data, ecological understanding and/or modelling skills, users 
may find that for meeting objectives for which spatially and 
temporally explicit information is required, and where shifting 
climate suitability is likely to be an important direct driver 
of vulnerability, correlative approaches provide appropriate 
information. Where species-level objectives do not require 
spatially explicit information and where considering a broad 
range of climate change impact mechanisms is important (e.g., 
changing inter-species interactions, disruption of environmental 
triggers) then trait-based approaches may be most appropriate. 
In many cases, it may be possible to use multiple or combined 
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approaches, thereby taking advantage of the strengths of 
component approaches (see Step 5 for further discussion). 

Step 3. Identify the CCVA approaches for 
which you have sufficient resources

CCVA approaches and the methods used to apply them 
differ markedly in the resources they require, so the guidance 
we provide here is necessarily general. Very broadly, however, 
mechanistic approaches tend to be most resource intensive, 
with the simplest trait-based and tool-facilitated correlative 
approaches least so. In Table 5, we highlight the resources often 
required and/or desired to apply each of the three main CCVA 
approaches, discussing in turn: species distribution, trait and 
molecular data; climate data; ecological data; information on 
climate change impacts manifested indirectly through humans; 
expertise requirements; and final technological requirements. 

Table 4. CCVA objective categories, examples of outputs required to meet them, and the approaches potentially able to deliver 
these. We note that combined CCVA approaches may also be applicable for meeting the examples specified. The suitability of each 
combination type (see Appendix Table D) for meeting objectives is typically dependent on that of their specific component approaches.

CCVA Objective 
categories
(from Table 1) Examples of CCVA outputs needed for addressing objectives

CCVA approaches

Co
rr

el
at

iv
e

Tr
ai

t

M
ec

ha
ni

st
ic

Which? 

Species vulnerability rankings Y Y Y

Subpopulation vulnerability rankings or extinction probabilities Y Y

Species invasion potential rankings Y Y Y

How much?

Extinction probabilities of species and/or populations Y

Estimates of range shifts / change in suitable climate-space (magnitude, distance, rate) Y Y

Dispersal potential Y Y

Why?

Intrinsic climate change susceptibility (i.e., sensitivity and/or adaptive capacity) Y Y

Identity of climatic drivers of vulnerability Y Y

Identity of biological drivers of vulnerability Y Y

Where?

Location of areas with greatest concentrations of most or least vulnerable species Y Y Y

Location of climatically suitable or unsuitable areas for species in future Y Y

Location of potential corridors and/or refugia Y Y

Subpopulations outside projected suitable climates Y Y

Location of areas most impacted by specific vulnerability drivers including disruption of inter-specific 
interactions and human responses to climate change

Y Y

When?

Time frame of projected risk to species, sites and landscapes Y Y

Rate of shift in climate space Y Y

Species/subpopulation potential turnover rate Y Y

What’s missing?

Key gaps and uncertainties – climatic Y Y Y

Key gaps and uncertainties – biological Y Y

Key gaps and uncertainties – in our understanding of impacts and their driving mechanisms Y Y Y

Key gaps and uncertainties – human responses to climate change as a driver of vulnerability# Y Y Y

Species for which more information is needed to enable CCVA
# This is an active research area – each approach may inform at least some aspects of how human responses may drive vulnerability.

We discuss each of these requirements briefly below in the 
context of this step, providing explanations using terminology 
and descriptions that are as simple and clear as possible; more 
detailed and rigorous guidance on selecting input data is 
provided later under Section 5.1 (Selecting and using input 
data). We highlight examples of free resources that may be of 
help to users (Table 6). Users may want to make use of Table  5 
to record or highlight each resource type and information 
requirement evaluated, thereby noting where their resource 
strengths and gaps lie, and facilitating completion of this step. 
We include a row at the end of the table to record your feasibility 
conclusions. Finally, we note that, during evaluation of species 
data, users may recognize that their focal species is particularly 
poorly-known, small-range or a declined-range species (see 
Box 3), in which case users should see Section 4.2 (Approaches 
for three challenging CCVA situations: poorly-known, small-
range and declined-range species). 
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Table 5. Summary of the data resources generally required by each CCVA approach. We note that these are broad 
generalizations and that within each approach, some methods range from resource demanding to more user-friendly. Freely available 
data sources meet some of the needs described.

Resource type Input requirements Correlative Trait-based Mechanistic
Species distribution 
data*

Point localities; and/or May be used May be used May be used

Gridded/raster distributions; and/or Required May be used Generally required

Polygons/maps May be used (less 
desirable)

Generally 
required

May be used (less 
desirable)

Species trait data* Demographic traits; and/or 
Morphological traits; and/or
Behavioural traits; and/or
Ecological traits

Not used Required Required

Physiological traits (e.g., thermal tolerances, energy 
requirements)

Not used May be used Required by some 
methods

Molecular data May be used May be used May be used

Climate data Distant past or paleoclimate projections May be used May be used May be used

Recent past/baseline climate projections Required Generally 
required

Required

Future projections Required Generally 
required

Required

Ecological data Spatial projections of land cover (reflecting ecosystem/
habitat)

May be used May be used May be used

Spatial projections of ecological processes (e.g., fire, 
hydrology, sea level rise)

May be used May be used May be used

Data describing exacerbation of other threats (not caused 
by climate change)

May be used May be used May be used

Indirect Impacts Data describing human responses to climate change Not generally used May be used May be used

Data describing climate change interactions with other 
threats

Not generally used May be used May be used

Expertise Tools and/or user-friendly interfaces available? For some methods For some 
methods

For some methods

Species distribution modelling (assuming a tool is not used) Required Not used Not used

Geographic Information Systems (assuming a tool is not 
used)

Required Generally 
required

Required

Species biology Not used Required Required

Climate projections and global scenarios Required Generally 
required

Required

Technological 
requirements

Hardware (e.g., computer) Required Generally 
required

Required

Software (additional to an operating system and 
spreadsheet application)

GIS software often 
required

GIS software 
may be required

GIS software often 
required

Do your available resources meet the resource requirements?* Y/N/Maybe Y/N/Maybe Y/N/Maybe

*	 IMPORTANT: If you know or suspect that your focal species may be or include a poorly-known, small-range or declined-range species then please see Box 3 and 
Section 4.2 (Approaches for three challenging CCVA situations).

4. Selecting and evaluating CCVA approaches and methods
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Species distribution range data 
Species distribution range data are typically found in three forms. 
Point localities represent a collection of data points indicating 
locations where a species has been found to occur. They may have 
been collected as direct observations in the field (from atlases, 
surveys or citizen science programmes), or as spatial references 
for specimen collections held in museums or herbaria. These 
and other sources of distribution data may be accessible through 
portals or databases such as the Global Biodiversity Information 

Facility (GBIF). Gridded data (or ‘raster data’) are based on 
presence and/or absence of a species within a mapped grid of 
variable size. Range polygons typically represent the maximum 
known extents of species’ distributions, whether globally or 
within a smaller geographical unit. If you know or suspect that 
your focal species may be or include a poorly-known, small-range 
or declined-range species then please see Box 3 and Section 4.2 
(Approaches for three challenging CCVA situations: poorly-
known, small-range and declined-range species).
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Table 6 presents examples of sources of species distribution 
information. The IUCN Red List of Threatened Species is 
the largest repository of range polygons; other sources are 
also available, including field guides, action plans and journal 
papers. It is important to be aware that both range polygons 
and gridded data may include areas where a focal species does 
not occur (e.g., where a species occurs around a mountain but 
not on it, the map will typically include the mountain) and they 
therefore represent the limits of species’ distributions rather 
than the areas of occupancy. It may be desirable, depending 
on the intended use, to modify such data by removing areas 
of, for example, unsuitable habitat or elevation, that are known 
to exclude the species in question (e.g., Boitani et al., 2007; 
Beresford et al., 2011).

Species trait data
Demographic traits include information such as generation 
times, reproductive outputs, and longevity, while 
morphological traits relate to organisms’ sizes and shapes. 
Information on many of these per-species traits have been 
gathered from ex situ collections (e.g., zoos and botanical 
gardens); databases housing these data include Utheria (www.
utheria.org) and the Zoological Information Management 
System (ZIMS; www.isis.org). It is important to recognize, 
however, that ex situ individuals may not always accurately 
reflect traits found in the wild (e.g., species may live much 
longer in captivity). Behavioural traits cover migratory, 
breeding, and dispersal habits, amongst others, and ecological 
traits provide information on species’ interactions with their 

Table 6. Examples of data resources available for use in CCVA (adapted from Pearson, 2010). Those listed tend to focus at global or 
continental scales, but many regional- and national-scale resources are also available.

Examples of open access data sources for CCVA

Species data

Point locality 
distribution data

Global Biodiversity Information Facility (GBIF): 
point data available for ~1.5m species globally 
(data need to be ‘cleaned’ before use, e.g., see 
Chapman, 2005)

www.gbif.org

Gridded distribution 
data

Finnish Bird Atlas http://atlas3.lintuatlas.fi/background/copyrights

South African Bird Atlas data http://sabap2.adu.org.za/index.php

South African Frog Atlas data http://adu.org.za/frog_atlas.php

Distribution polygons/
maps

IUCN Red List Database (Species Information 
System): polygons available for ~50,000 species 
globally, including all mammals, birds, amphibians, 
cartilaginous fish and corals

www.iucnredlist.org/technical-documents/spatial-data

NatureServe: polygons available for Western 
Hemisphere mammals, US fishes and Listed and 
imperilled species

www.NatureServe.org

BirdLife: polygons available for all the world’s bird 
species (>10,000)

www.birdlife.org/datazone/info/spcdownload

Box 3. Types of species that pose challenges to CCVA

We consider three types of focal species that cause particular challenges for CCVA, and discuss approaches for carrying out 
their CCVAs in Section 4.2.

1. Poorly-known species are those for which few data are available due to low sampling of their distributions and/or poor knowledge 
of their biology. This may be due to funding shortages, inaccessibility of these species’ habitats, low densities throughout their 
ranges or otherwise low detectability. Poor data availability is a serious challenge to CCVA using any of the conventional approaches, 
and is particularly acute in tropical regions (Feeley & Silman, 2011), which is also where the greatest biodiversity typically occurs 
(Gaston, 2000).

2. Small-range species may or may not be locally common but occur only in a small area due to, for example, high climatic specialization 
(Ohlemüller et al., 2008), specific non-climatic requirements (Damschen et al., 2010), competition with other species, or geographic 
isolation (e.g., on islands). Small-range species can potentially be assessed using trait-based and mechanistic approaches, but 
assessments using correlative methods are inadvisable if the numbers of their occurrence records fall below the recommended 
thresholds (see Section 4.2 for further detail). 

3. Declined-range species have extant ranges that are substantially smaller than their known ranges in recent history (nominally 
post-1750; longer or shorter timescales may be appropriate depending on the species); this decline may or may not have ceased. 
For the purposes of this discussion, we consider only those cases where declines are not caused by anthropogenic climate change. 
Declined-range species can generally be assessed using trait-based and mechanistic approaches, assuming that required data 
are available and that such approaches meet the assessors’ CCVA objectives (see Section 4.2; Tables 4–5). They pose particular 
challenges, however, to correlative approaches because the extant range is unlikely to reflect the full breadth of the species’ 
environmental niche. Where ranges have declined such that the species occurs only in a small area, assessment challenges are 
compounded by those for small-range species.

http://www.utheria.org
http://www.utheria.org
http://www.isis.org
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Species trait data IUCN Red List Database (Species Information 
System)

www.iucnredlist.org/

IUCN: climate change sensitivity and adaptive 
capacity related traits for all birds, amphibians  
and corals

See supplementary information of www.plosone.org/article/
info%3Adoi%2F10.1371%2Fjournal.pone.0065427. Raw data available 
on request from redlist@iucn.org

Utheria: mammal traits http://www.utheria.org/

TRY: plant traits http://www.try-db.org/

Traitnet: plant traits http://traitnet.ecoinformatics.org/ 

BirdLife Data Zone http://www.birdlife.org/datazone/home 

Amphibiaweb http://amphibiaweb.org/ 

Biotraits: thermal responses of physiological and 
ecological traits, especially consumer-resource 
interactions (1,508 spp)

http://biotraits.ucla.edu/ 

African Albertine Rift mammals, reptiles, 
freshwater fishes, some plants

(Carr et al., 2013). Scores available in appendices: http://www.traffic.
org/non-traffic/SSC-OP-048.pdf. Raw data available on request from 
redlist@iucn.org

Molecular data Genbank: annotated collection of all publicly 
available DNA sequences

http://www.ncbi.nlm.nih.gov/genbank/ 

Climate data

Distant past or 
paleoclimate 
projections

NOAA http://www.ncdc.noaa.gov/data-access/paleoclimatology-data 

Climate Research Unit (University of East Anglia) http://www.cru.uea.ac.uk/cru/data/paleo/

Recent past or 
baseline climate 
projections

Various datasets based on meteorological and 
satellite data. 

See Table 8 for details.

Future projections IPCC Data Distribution Centre http://ipcc-data.org/

WORLDCLIM http://www.worldclim.org/ 

AFRICLIM for African climate https://www.york.ac.uk/environment/research/kite/resources/ 

Ecological data

Landcover and 
ecological processes

Global Landcover Facility: landcover and other 
products, floods

http://glcf.umd.edu/data/ 

NASA (MODIS): Landcover, cloudcover, fire 
frequency

https://lpdaac.usgs.gov/products/modis_products_table/modis_
overview

USGS: Elevation and related variables for the globe 
(1 km2)

http://edc.usgs.gov/products/elevation/%20gtopo30/hydro/index.html

SRTM: Digital elevation model (90m2) http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-
database-v4-1

Soil type: UNEP http://www.grid.unep.ch/data/data.php?%20category=lithosphere

Watersheds (or hydrobasins): Lehner and Grill 
(2013)

http://hydrosheds.org/ 

NOAA: Various oceanographic products http://www.nodc.noaa.gov/access/

Human responses to 
climate change

Human vulnerability to climate change in Southern 
Africa by 2050 (Midgley et al., 2011)

http://www.parcc-web.org/parcc-project/documents/2012/12/
climate-risk-and-vulnerability-mapping-for-southern-africa-status-
quo-2008-and-future-2050.pdf 

Technical resources

Geospatial analyses Quantum GIS http://www.qgis.org/en/site/ 

GRASS GIS http://grass.osgeo.org/download/

WorldMap http://worldmap.harvard.edu/ 

R https://www.r-project.org/ 

Python https://www.python.org/

Software for Assisted Habitat Modelling (SAHM) https://www.fort.usgs.gov/products/sb/5090

Correlative modelling 
software

Maxent https://www.cs.princeton.edu/~schapire/maxent/ 

openModeller http://openmodeller.sourceforge.net/ 

Table 6 cont’d. Examples of data resources available for use in CCVA (adapted from Pearson, 2010). Those listed tend to focus at 
global or continental scales, but many regional- and national-scale resources are also available.
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Examples of open access data sources for CCVA

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0065427
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0065427
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0065427
http://www.traffic.org/non-traffic/SSC-OP-048.pdf
http://www.traffic.org/non-traffic/SSC-OP-048.pdf
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environments and include their habitat requirements, inter-
species interactions and reliance on environmental triggers. 

Traits of relevance for CCVA frequently differ between 
taxonomic groups; for corals, for example, the types of 
species’ algal symbioses are of importance for climate change 
vulnerability, while for aquatic plants, salt tolerance may be 
key. Sources of trait information include online databases (see 
Table 6), formal and grey literature, field guides, the IUCN’s 
Species Information Service (SIS), and experts’ knowledge. 
In cases where specific data are not available, it may be 
possible to infer traits from closely related taxa or from other 
characteristics (e.g., inference of dispersal ability and feeding 
guild from morphological traits) (see Hespenheide (1973) 
for a review), providing a potentially very valuable source of 
information for poorly known species. 

Data on physiological traits such as thermal tolerances and 
energy requirements can be extremely valuable for climate 
change vulnerability assessments since they allow more 
confident predictions of species’ fundamental niches and hence 
more robust range predictions (Kearney & Porter, 2009). These 
data are, however, amongst the most challenging to source. 
Laboratory experiments and records for species held ex situ 
provide the main sources of such information, but studies of 
in situ physiological responses may also be found in formal and 
grey literature. As with demographic trait data, physiological 
trait data tend to be restricted to a few well-studied species, 
and caution should be exercised in extrapolating data from 
ex situ records. Physiological traits are valuable for trait-based 
approaches, essential for mechanistic approaches, and can be 
incorporated in correlative-mechanistic approaches. 

Molecular information 
Molecular data, including on neutral genetic markers, can help 
to determine population processes including dispersal and 
population size fluctuations. Recent advances in sequencing 
technology now allow these processes to be accurately traced 
based on thousands of genetic markers – an increase of three 
orders of magnitude over recent years. Moreover, the markers 
can be linked to genes under selection and involved in 
adaptation. This can be used to investigate both past adaptation 
to different environments (using a correlative approach) and 
potential for future adaptation (informing mechanistic models 
and viability analyses). 

Molecular data may be used to estimate species’ potential 
for adaptation but they do not easily indicate the extent 
to which adaptive shifts will impact upon the traits that 
influence species’ distribution and abundance. This requires 
quantitative genetic assessment of variation within and 
among populations, which can be more difficult to undertake 
than molecular studies, particularly in species with long 
generation times. However, there is potential to combine 
genomic data with phenotypic studies to evaluate the extent 
to which traits might be shifted by rapid evolution. Genetic 

data are generally available for small numbers of species only 
(e.g., see Table 6). 

Generally applications of correlative models assume that 
populations of species respond to climate change in the same 
manner across their range. However, local adaptation can 
enhance fitness of populations to their immediate environment 
at the expense of reducing their niche breadth compared to 
the species as a whole (Shaw & Etterson, 2012). When this 
occurs, applying a correlative model to a species as a whole 
could overestimate the species’ ability to withstand anticipated 
climate change (O’Neill et al., 2008; Pearman et al., 2010; 
Valladares et al., 2014; Hällfors et al., 2016). In this context, 
molecular data can be used as a proxy for the spatial scale of 
local adaptation within a species by, for example, allowing 
assessors to divide species into mutually exclusive subgroups 
(lineages) and estimating vulnerability for each group 
separately (e.g., Pearman et al., 2010; Hällfors et al., 2016).

Climate data
We briefly discuss three categories of climate data here, but 
provide more detailed explanations, including on their use, in 
Section 5.1.3 (Climate datasets). Distant past or paleoclimate 
projections can extend climate records from hundreds to 
millions of years, and are derived using proxy methods such as 
dissolved isotopes in sediments and ice, or from plant growth 
rates inferred from fossilized tree rings (Folland et al., 2001). 
They can be used to train and test correlative models’ predicted 
species distributions by developing climatic correlations based 
on longer, historical time scales (Lawing & Polly, 2011). In 
order to achieve this, historical species distribution data, 
typically inferred from fossil evidence, are also required. Both 
data types are subject to uncertainties associated with reliability 
of the original samples and the interpolation techniques used, 
and these should be borne in mind when using them to make 
inferences about current and future species distributions. 
Various paleoclimatological data sets are available (see Table 6). 
They may potentially be used by all CCVA approaches, but 
have most often been associated with correlative approaches 
(e.g., Huntley et al., 2006).

Recent past or baseline climate data aim to represent the 
conditions at the onset of the impacts of anthropogenic 
climate change (i.e., typically from the half-century prior to 
2000). A fundamental distinction is that baseline climate data 
are derived from actual meteorological station observations 
whereas future climate projections are derived from models 
(GCMs). Baseline climate data are used to infer the climatic 
conditions at which species’ distributions are assumed to 
have been at equilibrium, and hence are important for 
identifying the variables by which each species is theoretically 
constrained. As such, they are used to train correlative models 
as a basis for future projections, and they form an essential 
reference point for all measures of projected future change. 
All CCVA approaches require the use of baseline climate 
observations, with the occasional exception of some trait-
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based approaches in which distribution range data are lacking 
or where assessments of biological susceptibility alone are 
required. We discuss baseline climate datasets in more detail 
in Section 5.1.3 (Climate datasets), and provide examples of 
available datasets in Table 8. 

Future projections of climate are produced by GCMs, 
which are computationally intensive mathematical models 
that simulate atmosphere and ocean processes, including sea 
ice and land-surface components, for weather forecasting and 
projecting climate change. Many groups and laboratories 
around the world run GCMs to produce projections of 
future climates, and each model is run multiple times to 
accommodate uncertainties in natural components such as 
cryospheric (snow and ice) feedback (i.e., the amplification or 
moderation of physical changes by snow or ice environments), 
as well as uncertainties in anthropogenic variables including 
future greenhouse gas emissions. Uncertainty from different 
emissions scenarios is modelled according to a series of plausible 
scenarios of expected atmospheric CO2 concentrations, the 
most recent of which are those defined by the Representative 
Concentration Pathways (RCP’s) associated with the Fifth 
(latest) IPCC report (Moss et al., 2010; IPCC, 2013b).

While the various models and their runs all produce projections, 
none perfectly reproduces the climate systems being modelled 
and numerous uncertainties remain. As a result, use of a 
number of models and runs is recommended. Maintaining 
and using a measure of the disagreement between models is 
extremely important for understanding the uncertainties in 
predictions and accommodating and communicating them in 
subsequent use (see Section 5.1.3 (Climate datasets) for further 
discussion, including on selection of model, emissions scenarios 
and bioclimatic variables).

The IPCC’s Data Distribution Centre (http://ipcc-data.org/) is 
a portal for access to a broad range of future climate datasets. 
Reference to the associated ‘Guidance on use of data’ section 
(including technical guidelines, fact sheets, supporting material, 
scenario processes, definitions, etc.) is strongly recommended. 
As with baseline climate data, future climate projections are 
needed for all CCVA approaches, except where trait-based 
methods are used either in the absence of distribution range 
data or for simplistic, preliminary CCVAs. For correlative and 
mechanistic models, future climate projections are used to 
project future climatic suitability of landscapes, and for trait-
based approaches, to project climate change exposure across 
species’ current ranges. 

Ecological data
Spatially-explicit landcover (representing ecosystems and/
or habitats), elevation and soil type datasets have been used 
in various ways in CCVAs, and are relevant for all three 
CCVA approaches. We discussed previously how habitat 
and elevational associations may be used to refine species’ 
distribution range maps (i.e., by removing areas of unsuitable 

habitat and elevation where the species is known not to be able 
to occur (Boitani et al., 2007; Beresford et al., 2011; Foden et 
al., 2013)). They may also be used in combination with future 
climate projections to create more refined estimates of future 
suitability of each landscape component/grid cell for focal 
species. Spatial projections of ecosystem processes such as fire, 
sea level rise and hydrology may also be used for this purpose. 
For example, Aiello-Lammens et al. (2011) used landcover, 
elevation, projected sea level rise and a range of site-specific 
information including erosion rate, storm frequency and tidal 
trends to predict sea level rise impacts on Snowy Plovers in 
Florida. These land- and seascape-scale physical and ecological 
data have been used in correlative, mechanistic, trait-based and 
combined approaches. Uncertainties in such data should be 
carefully noted. Further discussion on this subject is included 
in Section 5.1.6 (Accounting for habitat availability).

Indirect climate change impacts 
Biodiversity threats caused by indirect impacts of climate 
change have been poorly recognized in CCVA to date, despite 
their potential to overwhelm direct climate change impacts 
on species (Turner et al., 2010; Maxwell et al., 2015). We 
consider such indirect impacts to include those due both to 
human responses to climate change (e.g., expansion of biofuel 
plantations; construction of dams and sea walls, expansion into 
newly suitable agricultural or fishing zones) and to the natural 
systems that focal species inhabit (e.g., increased exposure 
and susceptibility to pathogens and invasive species; declining 
resource availability). These impacts can interact with non-
climatic threats, potentially greatly magnifying their impacts. 
Mechanistic and trait-based approaches typically accommodate 
consideration of changes in inter-species interactions and all 
approaches implicitly incorporate aspects of changing habitat 
suitability. Few, however, consider human responses to climate 
change, or the interacting effects of climate change on non-
climatic threats. This important yet neglected aspect of CCVA 
is discussed in more detail in Section 5.2.1 (Direct versus 
indirect impacts of climate change).

Expertise
We assume that practitioners have the expertise to make use 
of conventional computer software (e.g., Microsoft Excel), 
and here distinguish two main additional types of expertise, 
namely technical and biological. We note that CCVAs are 
often carried out by teams, making assembling suitable 
combinations of expertise easier.

The technical expertise needed to apply trait-based approaches 
is often relatively low, involving gathering information in, 
for example, a spreadsheet, and using simple calculations to 
combine these into overall rankings or scores. The level of 
expertise needed to assess species’ exposure to climate change 
varies from very low where, for example, simple overlays of 
pre-processed climate surfaces (e.g., www.climatewizard.org 
for the USA) are used, to more complex with the requirement 
of proficiency in Geographic Information Systems (GIS) for 

4. Selecting and evaluating CCVA approaches and methods

http://ipcc-data.org/
http://www.climatewizard.org
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others. NatureServe’s Climate Change Vulnerability Index 
(CCVI, Young et al., 2011) is a well-documented, user-friendly 
tool that provides a low-technical-expertise CCVA option.

The numerous methods available to carry out correlative 
and mechanistic CCVA approaches preclude generalization 
about the levels of technical expertise they require. Some 
statistically complex approaches provide user-friendly 
interfaces (e.g., MaxEnt; BIOMOD) and hence require little 
technical expertise to run, while others require a knowledge 
of programming languages such as R and/or extensive GIS 
skills. We strongly urge users to familiarize themselves with 
the technical aspects of even user-friendly methods since this 
is essential if their settings are to be correctly parameterized, 
sensitivity tested and their results responsibly interpreted. It is 
also advisable for assessors to understand the methods used to 
prepare climate projection data for use, since their assumptions, 
uncertainties and downscaling approaches are all important 
CCVA parameters. More information on these is available in 
Section 5.1.3 (Selecting and using climate datasets).

Biological expertise is highly desirable and in many cases 
essential for CCVA. In their most simple form, correlative 
approaches can be based purely upon distribution data, but 
without biological expertise errors may not be identified and 
results can easily be misinterpreted. A thorough understanding 
of a species’ dispersal mechanisms, dispersal and colonization 
potential, and its biological requirements are all important 
aspects of translating correlative model outputs into vulnerability 
assessments. Trait-based assessments require, by definition, 
knowledge of a species’ biology and ecology, and mechanistic 
(including combined correlative-mechanistic) approaches 
generally have the most intensive requirements for biological 
expertise, since users must select not only which variables to 
include but also how these should be parameterized and how they 
interact with each other. Biological expertise is also particularly 
important for evaluating where and how information gaps may 
be filled using, for example, inferred or proxy traits. 

Technical requirements
A spreadsheet application may be all that is required for simple 
assessments (e.g., trait-based; NatureServe’s CCVI (Young et al., 
2012)), but where datasets become large (e.g., >100,000 records), 
storage capacity and functionality of such software may become 
limiting. Databases such as Microsoft Access and Microsoft 
SQL Server are more stable, much faster, allow bulk processing 
of large repeated calculations and have easily customizable 
functions. The benefits of more sophisticated software must be 
traded, of course, against purchase costs and the time and effort 
needed to learn to operate it. The statistical language and 
programming environment R (also called GNU S) is gaining 
increasing popularity and use as it is an open-source software 
package which allows storage and analysis of large datasets.

A number of software packages are available which are 
designed specifically for the analysis and prediction of species 

distributions (i.e., correlative approaches); these include 
MaxEnt, ModEco and many R packages, among numerous 
others. Each of these packages requires some training for 
responsible application and for interpreting their outputs, and 
each has a range of advantages and disadvantages relative to the 
others. Examples of different method and models are provided 
in Appendix Tables A–D. 

Finally, although many software packages include a spatial 
component, assessors will often find it useful to work with 
a standalone GIS software package, particularly when 
constructing maps to display assessment results. The most 
commonly used GIS software package is ArcGIS, but open 
access GIS packages such as QGIS, DIVA-GIS (designed with 
species distribution modelling processes in mind), PostgreSQL 
and PostGIS, among others, will often be more than sufficient. 
A range of additional software packages designed to link to 
GIS software and to conduct specific CCVA-relevant analyses 
are available. One such package is RAMAS GIS, a programme 
designed to combine geographic and demographic species 
data in order to conduct spatially-explicit population viability 
analyses. Again, we reiterate that the software packages listed 
here are only a handful of examples of a much wider available 
range, and we encourage assessors to explore other options 
that may be available to suit their needs. 

The specifications of computing hardware required are mostly 
governed by the total size of the data to be processed, and 
the complexity of the operations to be undertaken. Data 
size is, in turn, determined by numerous factors, including 
the spatial resolution of geospatial coverages (e.g., climatic 
data, land cover), the geographic scope of the assessment, 
and the number of species under assessment, among others. 
In general, the greater the storage capacity available, and the 
faster the processing power of the computer, the better, and 
in some cases it may be necessary to use external data storage 
devices and advanced ‘supercomputer’ hardware. At worst, 
undertaking assessments with insufficient data storage or 
processing capacity will mean that operations fail to execute, 
although often it can simply result in processes taking large 
amounts of time. Assessors with limited hardware capacity 
may need to compromize between the time they are willing to 
allow for processes to compute and the scope or complexity of 
their assessment. 

Step 4. Do Steps 2 and 3 identify any of the 
same approaches?

The objective of this step is to identify the one or more CCVA 
approaches that both meet objectives and for which sufficient 
resources are available. Under ideal circumstances, users may 
find overlap in multiple approaches, and under somewhat 
less ideal circumstances, users might find overlap in only 
one approach between those selected according to objectives 
and those by resources. Nonetheless, both of the above 
circumstances allow practitioners to proceed to the next steps.
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Under poor circumstances, users might find no overlap between 
approaches selected according to objectives and those based 
on resources. This may be due, firstly, to having set objectives 
that are overambitious given resources available. For example, a 
practitioner may wish to assess the climate change vulnerability 
of each individual population of a particular species at a site 
using a mechanistic approach, but not have the demographic 
or fine-scale distribution data nor the GIS expertise needed 
to implement these. In this case the best strategy is to revisit 
objectives, making them broader and hence achievable using 
less resource-demanding approaches. 

A second possible scenario for failure to achieve overlap between 
objective- and resource-selected approaches is because available 
resources are insufficient for any CCVA approaches. Under low 
resource data scenarios, it may be necessary to evaluate options 
for collecting or compiling the data needed, improving technical 
resources (i.e., purchasing computer hardware and software) 
and increasing capacity and expertise for implementing CCVA 
approaches. 

Step 5. Select your approach(es) and the 
methods for applying it/them

Given the relative strengths and weaknesses of each CCVA 
approach and the current scarcity of studies validating the 
accuracy of each in different contexts, a wise way for users to 
proceed may be to apply more than one approach and to use 
the spread of CCVA results to gain an understanding of the 
resulting uncertainty. In practice, however, the number of 
overlapping approaches emerging from Step 4, as well the time 
and resources available for the CCVA, will inform users’ choice 
of whether to select one or multiple approaches. 

Option 1: Using a single CCVA approach
Since comparison with results from other approaches is 
impossible, it is particularly important for users to understand 
the strengths, limitations and biases of the selected approach, 
and to interpret results in the context of the focal species’ biology 
and ecology. Using multiple methods for applying the approach 
is strongly advised since, where possible, this will provide the 
spread of results needed to explore the uncertainty in assessment 
due to the method(s) selected. Box 4 provides guidance on 
selecting appropriate methods. Option 2a describes ways in 
which the results of multiple methods may be used for CCVA.

Option 2: Using multiple CCVA approaches
Under the ideal circumstances where more than one approach 
emerges as both suitable for meeting CCVA objectives and 
applicable given available resources, users have two options for 
proceeding, one or both of which may be applied (see Cruz et 
al., 2015).

2a. Carry out assessments separately using multiple approaches and/
or methods
This is best carried out in the context of a thorough 

understanding of the key advantages and limitations of each 
method, and in the context of the biology and ecology of the 
focal species. Using a common sense approach, we suggest 
four ways in which the results from multiple approaches and 
methods may be combined. 

i)	 At the broadest level, a consensus approach may be applied. 
Results may be used, for example, to allocate focal taxa into 
categories of concern based on a combination of the degree 
of vulnerability predicted and the proportion of models (and 
hence certainty) of predictions (see Figure 9). 

ii)	Where the CCVAs undertaken produce results that 
are quantitatively similar (e.g., a series of distribution 
range projections from different correlative methods), an 
ensemble approach may be used. These produce both 
measures of central tendency (e.g., mean, median) and 
of dispersal (e.g., variance, coefficient of variation) of the 

Box 4. Selecting the method(s) for applying 
CCVA approaches IMPORTANT

We provide classifications and examples of some of the main 
methods available for correlative, trait-based, mechanistic 
and hybrid approaches in Appendix Tables A, B, C and D 
respectively. These include explanations of how each method 
type works, their particular resource requirements, examples 
of their use, and whether user-friendly tools are available for 
application. We note, however, that with the rapid pace of 
development in this field, these tables are likely to become out-
of-date relatively rapidly, potentially well before the next version 
of these guidelines is released.
 
We encourage users to carry out two important tasks 
when selecting their method(s):
1.	Conduct a thorough literature review to find out the 

latest available methods for your CCVA approach(es) 
of interest. Key aspects to note include the prevalence 
of their use, their resource requirements and their key 
advantages and limitations.

2.	Read Sections 5 and 6 of these guidelines, which discuss 
some of the choices and challenges that lie ahead in 
applying methods, as well as the uncertainties likely to 
arise from them, including due to method choice.

Figure 9. Framework for interpreting the results of 
multiple CCVA approaches and methods according to a 
consensus approach.
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CCVA results. We note that the results of methods from 
within the same approach are likely to be correlated, and 
that between-approach comparisons are likely to introduce 
a broader spread of results, suggesting that varied weighting 
of results might be appropriate. 

iii)	Using upper and lower projection bounds or extremes to 
propose best and worst case scenarios (with a plausible 
range of possibilities between these), may be useful when 
CCVA results are qualitatively different, and this may 
be applied in conjunction with a consensus approach 
(suggestion (i)). 

iv)	In cases where CCVA results differ markedly and evidence 
supporting either is lacking, users could choose to follow the 
precautionary principle and take the highest vulnerability 
assessment as the basis for determining the level of concern 
for the focal taxa.

Irrespective of which of the above approach(es) is selected, it is 
important to investigate the reasons for the inevitable spread in the 
results. This may expose any errors in the assessment and greatly 
increases the strength of conclusions drawn from the results.

2b. Combine approaches
Hybrid CCVA approaches which combine elements from two or 
more approaches have begun to emerge, and these potentially 
draw on the strengths of their component methods. We 
summarize six emerging types of these, briefly describing how 
they work, tools available, resources required and published 
examples (Appendix Table D); they include combinations of 
correlative-trait-based, correlative-mechanistic and correlative-
mechanistic-trait-based approaches. Willis et al. (2015) 
identify the multiple ways in which correlative and trait-based 
approaches may be integrated, including for use for spatial 
conservation planning; they suggest that correlative approaches 
may benefit from trait-based measures of sensitivity (e.g., 
known climatic tolerances) and adaptive capacity (including 
dispersal capacity) (e.g., Warren et al., 2013), while trait-based 
approaches may be strengthened by using correlative-derived 
distribution range projections to quantify climatic tolerances 
and climate change exposure (e.g., Thomas et al., 2011; Young 
et al., 2011a; Smith et al., 2016).

The use of traits to inform projections of species’ dispersal and 
colonization capacities in particular has begun to receive 
attention. Estrada et al. (2016) outline framework highlighting 
how four key range-shift processes are affected by seven trait 
types, namely (with traits in brackets): (i) emigration (site 
fidelity); (ii) movement (movement ability); (iii) establishment 
(avoidance of small population effects, persistence under 
unfavourable conditions); and (iv) proliferation (reproductive 
strategy; ecological generalization and competitive ability (these 
three traits apply to processes (iii) and (iv)). Garcia et al. (2014) use 
traits to identify regions where correlative-based range projections 
may under- or overestimate assessments of climate change 

vulnerability for species, while Visconti et al. (2015) used species-
specific dispersal distances and generation length estimates to 
account for species’ ability to keep track of their projected shifting 
bioclimatic ranges. We discuss some of the challenges and 
uncertainties in the use of such trait data in Section 6.5 
(Uncertainty from biological trait and demographic data).

4.2	 Approaches for three challenging 
CCVA situations: poorly-known, 

	 	 small- and declined-range species

Availability of suitable data is a prerequisite for the conventional 
CCVA approaches outlined so far in these guidelines. 
Three types of species present particular challenges for their 
application: poorly known, small-range and declined-range 
species (see Box 3). “Poorly-known species” are problematic 
when scarce data on occurrences, traits or physiology preclude 
application of correlative, trait-based or mechanistic approaches, 
respectively. Challenges also arise in the particular case where 
occurrence data exist, but the characteristics of the focal species 
render the data inadequate for application of correlative CCVA 
approaches. This is the case for “small-range species” that have 
naturally small ranges due to, for example, high specialization, 
as well as for “declined-range species”, whose ranges have 
become smaller due to anthropogenic (non-climatic) threats.

Large numbers of poorly-known species lack biological data for 
trait-based or mechanistic approaches, particularly those with 
smaller body sizes and more restricted ranges (González-Suárez 
et al., 2012). Many poorly-known species, as well as small- 
and declined-range species, also lack sufficient occurrence 
data for correlative modelling. Because correlative approaches 
must statistically characterize the relationships between a 
species’ current range and the bioclimatic variables historically 
occurring there, they require a minimum number of species 

The Keel-billed Toucan (Ramphastos sulfuratus) in Costa Rica 
has moved its habitat from the lowlands and foothills up to at 
least 1,540 m following increased cloud-base levels due to climate 
change. © Andy Morffew
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occurrence records to ‘learn’ from in order to produce reliable 
results. The IUCN Standards and Petitions Subcommittee 
(IUCN, 2014) recommends that, as a general rule, at least five 
species occurrence records or ‘presence’ grid cells are required 
for each bioclimatic variable used (see Section 5.1.4 (Selecting 
and using species distribution data)); other authors suggest 
a minimum of 10, 50 or 100 records in total, depending on 
the model type and complexity, and the species under study 
(Stockwell & Peterson, 2002; Wisz et al., 2008). Species with 
occurrence data that do not meet these requirements are thus 
usually not modelled.

Many broad-scale assessments to date have been based on 
multi-species correlative approaches (e.g., Thomas et al., 2004; 
Araújo et al., 2006; Thuiller et al., 2011; Warren et al., 2013). 
While in some cases the species coverage is excellent (e.g., 90% 
of native European breeding birds; Huntley et al., 2008), it is 
more typical for a high proportion of species to be omitted due 
to insufficient records, especially in the most biodiverse regions. 
For example, in an assessment for African vertebrates (Garcia et 
al., 2012), only 33% of recorded species were modelled. Platts et 
al. (2014) found that species omitted from correlative CCVA in 
sub-Saharan Africa represented 92% of the region’s threatened 
amphibians, and that records for the omitted species spanned 
different climatic conditions and different rates of climate 
warming, compared to modelled species. These examples 
highlight that conventional CCVA methods are potentially 
restricted to a biased sample of species, rendering conclusions 
about the impacts of climate change on biodiversity incomplete 
(Schwartz et al., 2006; Platts et al., 2014).

The spatial resolution of the climate data used in correlative 
models is of strong importance, since distribution data will 
need to be modelled at the same scale. For climate data at one-
degree resolution, for example, a small-ranged species may 
occur in only a handful of ‘presence’ grid cells (111 x 111 km 
at the equator), even though hundreds of locality records may 
exist within these. This challenge may be alleviated for some 
species by increasing spatial resolution (and hence decreasing 
grid size) of the climate data using process-based, statistical 
or empirical downscaling. However, for species with very few 
locality records or particularly small ranges, and those for 
which lower spatial resolutions are necessary (e.g., fine-scale 
occurrence data not available, or data processing capacity is 
limited), this challenge remains.

We outline below five broad approaches for addressing the 
challenges of carrying out CCVA on poorly-known, small-
range or declined-range species. The first (i) is to gather data 
to allow conventional approaches to be used. The second (ii) 
considers a situation where time-series of population and 
climate data are available. The other three describe alternative 
CCVA approaches that allow CCVA to be carried out despite 
poor information. They include (iii) modifications of 
familiar correlative techniques, (iv) selecting alternative 
taxonomic foci for the models, and (v) implementing 

assessments that consider exposure of geographical areas 
rather than particular species’ distributions. The five alternative 
approaches are summarized in Table 7 (over).

i) Fill data gaps

Poorly-known species
The first option is to gather the missing data that are required 
for application of conventional correlative, trait-based or 
mechanistic models. For missing trait data, expert inference 
can often be made from related species, for example from 
higher taxonomic ranks (Foden et al., 2013). Data gaps can 
be filled through either eliciting expert opinion (Murray et 
al., 2009a; Flockhart et al., 2015) or using data imputation 
techniques applied to datasets covering related species (Buckley 
& Kingsolver, 2012; Swenson, 2014; Taugourdeau et al., 2014; 
Schrodt et al., 2015). Where the option of filling data gaps is 
pursued, it is advisable to assess the sensitivity of the results to 
different opinions/techniques, by comparing inference derived 
under sets of ‘optimistic’ versus ‘pessimistic’ assumptions. For 
example, an unknown trait can be scored as either detrimental 
or beneficial to a species’ chances of survival under climate 
change; the extent to which these opposing assumptions 
affect the overall outcome of the CCVA provides a measure of 
uncertainty associated with the gap filling undertaken (Martin 
et al., 2012; Penone et al., 2014; Meng et al., 2016).

In cases where, based on expert opinion or literary accounts, it 
is suspected that the distribution records available for CCVA 
under-represent a species’ true range, the estimation of the range 
could be systematically improved through iterative application 
of modified correlative techniques (see c), or by reference to 
literature, together with targeted fieldwork (Williams et al., 
2009; Platts et al., 2010).

Declined-range species
In cases where threats unrelated to climate change are known 
to have reduced the species’ range significantly, inclusion of the 
historical range can render conventional modelling applicable 
while allowing for a wider range of suitable environmental 
conditions to be captured in the model. However, here it 
becomes essential to control for the likely reasons for range 
decline in the model or in post-modelling analyses.

ii) Temporal analysis of population variability

Small-range and declined-range species
For species with insufficient occurrence records for correlative 
modelling, or for which the recorded or modelled spatial 
distribution does not provide a good representation of the 
climatic niche (e.g., edaphic specialists), temporal analysis of 
population variability could provide useful information about 
the vulnerability of populations, and species as a whole, to 
projected changes in climate (Damschen et al., 2010). This 
approach requires robust time-series of inter-annual population 
variability, both in terms of sampling rigor and in the length 

4. Selecting and evaluating CCVA approaches and methods
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of the record, and thus will apply to a relatively small subset of 
species. Assessors should be aware that, especially for species 
with naturally high inter-annual population variability, short 
time-series and/or few time-points could result in spurious 
detection of a climate change effect (McCain et al., 2016).

Given sufficient data, a typical approach is to perform a linear 
regression, wherein the dependent variable is the change 
in population size relative to the previous year (often log-
transformed), and the independent variables are measures of 
climate experienced by the population in the preceding year(s). 
Annualized climate data are available for most parts of the 
world, in some cases dating back to the beginning of the 20th 
century (e.g., CRU goes back to 1901; satellite products back to 

the 1980s (CHIRPS, TAMSAT) or early 2000s (MODIS); see 
Table 8 and Section 5.1.3.3 (Historical (baseline) datasets)). 
To control for density-feedback, the population size in the 
previous year is sometimes included as a covariate in the 
model. If population data are available for more than one 
site within the species’ range, these can be included in the 
same model, with differences across sites controlled for by 
including site as a random factor (mixed modelling; e.g., 
Bennie et al., 2013).

Temporal analysis of population variability has been used to 
assess climate change impacts on bird communities (Pearce-
Higgins et al., 2015) and Lepidoptera in the United Kingdom 
(Bennie et al., 2013; Martay et al., 2016). Most examples to 

Table 7. Approaches for three challenging CCVA situations.

Poorly-known species Small-range species Declined-range species (not climate related)

Conventional approaches

Correlative 
models

Statistically problematic 
where occurrence records are 
insufficient

Statistically problematic due to 
insufficient occurrence records

Problematic since extant range cannot be used 
to infer environmental niche

Mechanistic 
models

Problematic where mechanistic 
information is insufficient 

Applicable if mechanistic data available Applicable if mechanistic data available

Trait-based 
models

Problematic where trait 
information is insufficient

Applicable if trait data available Applicable if trait data available

Alternative approaches

i) Fill data gaps High priority; data addition 
or inference may render all 
conventional approaches 
applicable

Beneficial for correlative approaches 
if new data extend known distribution 
range
New trait data may render conventional 
trait-based and mechanistic 
approaches applicable

Additional data on extinct localities or 
range are advisable to complement extant 
occurrence records for correlative modelling 
(thus increasing environmental niche 
coverage). Additional trait data likely to render 
conventional trait-based and mechanistic 
approaches applicable

ii) Temporal 
analysis of 
population 
variability

Problematic where time-series 
information is insufficient 

Potentially applicable, if robust 
time-series of inter-annual population 
variability are available. Underlying 
demographic processes should be 
carefully considered

Potentially applicable, if robust time-series of 
inter-annual population variability are available. 
Underlying demographic processes should be 
carefully considered

iii) Modified 
correlative 
techniques

Potentially applicable; 
advantageous when species-level 
results are essential, although 
results will be less reliable

Potentially applicable, and 
advantageous when species-level 
results are essential

Potentially applicable, but important to ensure 
that predictors associated with decline are 
included in model or used to filter model 
projections

iv) Alternative 
taxonomic focus

Assessing assemblages of 
associated species is applicable 
when species-level results are 
not essential. This can be applied 
using conventional correlative and 
trait-based approaches

Apply correlative models to interacting 
species, particularly where closely 
coupled to the focal species (e.g., 
specialist resource species or close 
competitors). Assessing assemblages 
of associated species is applicable 
when species-level results are not 
essential; this can be applied using 
conventional correlative or trait-based 
approaches

As for ‘small-range species’. Assessing 
assemblages is particularly relevant where they 
share a common reason for decline. Ensure that 
predictors associated with decline are included 
in model or used to filter model projections

v) Exposure 
assessment of 
geographic area

Potentially applicable if region of 
occurrence is known and when 
species-level results not essential

Applicable when species-level results 
not essential; potential to make results 
more species-specific by using traits to 
interpret likely threats and opportunities 
arising due to region’s exposure to 
climate changes

Applicable when species-level results not 
essential; potential to make results more 
species-specific by using traits to interpret likely 
threats and opportunities arising due to region’s 
exposure to climate changes and by considering 
impacts on drivers of species decline
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date have not specifically targeted small-range or declined-
range species, but the approach is applicable regardless of 
range size. A representative sample across the known species’ 
range will, however, increase confidence in the climate drivers 
identified (Cayuela et al., 2016).

If a climate change signal is reliably detected from historical 
time-series, vulnerability to projected future changes in 
climate may be inferred from long-term trends in the aspects 
of climate identified as potentially important in driving 
population change (e.g., increased seasonality or inter-annual 
variability in rainfall, or mean annual warming).

iii) Modified correlative techniques 

Small-range species
Species with low numbers of occurrence records have in 
some cases been modelled using the simplest of “envelope” 
correlative techniques (Busby, 1991a), defined by the range of 
values occupied by a species across a set of relevant predictors. 
One example is the application of multidimensional niche 
envelopes to African amphibians (Platts et al., 2014). In 
order to include even those amphibians with a single, coarse-
resolution, gridded occurrence record, the envelopes were 
defined by the interquartile range of finer-resolution climatic 
conditions within those cells. Drawbacks of this highly 
simplified approach include that model performance (i.e., 
the model’s ability to accurately predict across space or time) 
is difficult to assess, that all predictors are given equal weight 
in limiting the species’ distribution, and that environmental 
conditions beyond the observed niche are generally considered 
wholly unsuitable, which is problematic if the species has been 
under-sampled. Most other correlative methods permit non-
zero predictions beyond the observed niche, but are still subject 
to high model uncertainty, particularly when applied to small 
sample sizes (Thuiller et al., 2004; Pearson et al., 2006).

In another application (Hof et al., 2011), also for amphibians 
but at a global scale, the assessment of all species was possible 
with the use of simple distance-based correlative models 
(Euclidean and Mahalanobis distance, which measure the 
similarity of species’ occurrences to the mean or centre of the 
available climatic space). More complex correlative modelling 
techniques can also be adapted to cater for small numbers of 
occurrences; adjustment of the “regularization multiplier” in 
MaxEnt, which controls the degree of model overfitting, is 
an example (Hof et al., 2011). Alternatively, models can be 
restricted to small numbers (e.g., two) of relevant environmental 
predictors, before combining many such models into one 
consensus model for the species (Lomba et al., 2010). This 
approach overcomes the limitation that sparse occurrences 
and many predictors may lead to model overfitting, thereby 
extending the application of correlative models to small-range 
species. Rare plants in Switzerland with numbers of occurrence 
records as low as 10 have been successfully modelled following 
this approach (Breiner et al., 2015).

Small-range and declined-range species
When applying modified correlative techniques to species 
known to be narrow-ranging due to specific non-climatic 
factors (e.g., proximity to water, rare soil-type, declined-range 
due to forest loss), it is important to take this into account when 
calibrating the model. For example, absences (background 
data) generated within regions of unsuitable soil or land use 
could result in an under-estimation of the species’ climatic 
niche. In some circumstances, this issue can be overcome by 
controlling for the relevant non-climatic factors in the model, 
or else by restricting absence data to sites where the species 
might plausibly have been recorded if climatic conditions were 
suitable – ideally, absence data should be chosen to mirror 
spatial, environmental and taxonomic biases in the presence 
data (Huntley et al., 2008; Phillips et al., 2009; Platts et al., 
2013a).

iv) Alternative taxonomic focus

Poorly-known, small-range and declined-range species
Another way to account for small-range, declined-range and 
poorly-known species in CCVA is to define an alternative 
taxonomic focus for the models. The first possibility is to focus 
on resource requirements of the species of interest. For example, 
assessment of the vulnerability of an endangered lizard in South 
Australia was based on the modelled distribution of two native 
grassland plant species that support populations of spiders on 
which the lizard depends (Delean et al., 2013). 

The second possibility is to model biotic communities or species 
assemblages rather than individual species. Community-level 
assessments combine data from multiple species to describe 
the spatial pattern in the distribution of those species as a 
collective (Ferrier & Guisan, 2006). Different entities can 
be modelled under this approach, such as community types 
with similar species composition or groups of species with 
similar distributions. Biome-level assessments (Midgley et 
al., 2003; Midgley & Thuiller, 2007), for example, help to 
identify regions within the species’ biome(s) that are most 
vulnerable to climate change. Applications of this approach 
include the modelling of suitable areas under future climate 
change for cloud forests in Mexico (Ponce-Reyes et al., 2013) 
and the Succulent Karoo biome in southern Africa (Midgley 
& Thuiller, 2007). For poorly-known species, community-
level models borrow strength from multiple species to optimize 
model parameterization (Ovaskainen & Soininen, 2011) and 
model selection (Madon et al., 2013). In the latter case, the 
variable set yielding the highest average performance across 
many species, as opposed to individual selection for each 
species, led to increased performance for small-range species 
(Madon et al., 2013). 

Species assemblages can also be identified on the basis of 
shared traits or associated habitats, under the assumption that 
such groups of species will respond in a similar way to climate 
change. Aggregating all occurrence records for the species in 
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the assemblage means that conventional correlative modelling 
techniques can be applied. Examples of modelled assemblages 
include climatically associated tree species in Mexico (Golicher 
et al., 2008), species with common traits (Vale & Brito, 2015), 
and darter species in the USA clustered on the basis of their 
locations and abundances (McKenna, 2003; McKenna et al., 
2013) or their associated abiotic conditions (McKenna, 2001). 

Community-level models can be combined with species-
level models, in hierarchical or multi-level approaches where 
information from one model type is combined with, or 
informs, the other. Three such applications focus on the 
endemic flora of California (Loarie et al., 2008), diatoms in 
Finland (Ovaskainen & Soininen, 2011) and darter species in 
the USA (McKenna et al., 2013).

v) Exposure assessment of geographic areas

Poorly-known, small-range and declined-range species
When familiar or alternative CCVA approaches are not 
feasible, or when the aim is to obtain a first-approximation 
of the potential impacts on poorly-known, small-range or 
declined-range species, assessments focused solely on exposure 
of geographic areas to climate change are a viable option. 
Such assessments should be based on the association between 
multiple dimensions of climate change and the different threats 
and opportunities that such changes represent for species 
occurring in that region (Garcia et al., 2014b). For example, 

the disappearance of specific climatic conditions threatens 
species with loss of suitable habitat, whereas high velocities of 
climate change (Loarie et al., 2009) may require species to track 
suitable climates at a fast pace. Application of detailed exposure 
assessments allows for the identification of geographic areas 
most exposed to particular changes in climate (Ohlemüller et 
al., 2006; Williams et al., 2007; Beaumont et al., 2010; Watson 
et al., 2013), and a qualitative assessment of the threats and 
opportunities for biodiversity that might be associated with 
those climate changes (Garcia et al., 2014b). 

When locations or extents of occurrence of small-range species 
are known, such exercises can have a more specific geographical 
focus. For example, rarity areas at the continental level have 
been shown to coincide with disappearing climates in the 
future (Ohlemüller et al., 2008). Conversely, in a more local 
application of exposure assessment, which also considered 
barriers to dispersal, plant endemism rates in the Eastern Arc 
Mountains of Tanzania and Kenya were found to be highest in 
sites where familiar climates were projected to remain accessible 
under climate change (Platts et al., 2013a). When trait data 
are available, they can be used to explore which species might 
be more or less sensitive and adaptive to identified climate 
changes (Garcia et al., 2014b) (see Section 2b). For example, 
the disappearance of climates poses a greater threat to species 
that are highly specialized to such conditions, whereas high 
velocities of climate change particularly threaten species that 
are both climate-limited and poor dispersers. 
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The rare Lungless Frog (Barbourula kalimantanensis) from Borneo absorbs oxygen entirely through its skin. This adaptation makes it 
especially sensitive to rising temperatures and lower oxygen levels in the water. Climate change driven increases in the severity and frequency 
of extreme weather conditions such as storms and droughts may also threaten the species. © David Bickford 
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5.1. Selecting and using input data

Section 4.1 (Steps 2–5) discussed ‘Carrying out your own CCVA’, 
including selecting appropriate spatial, taxonomic and temporal 
scales for meeting your CCVA objectives and considerations of 
the data needed to meet them. This section covers the extent 
and resolution of data needed to meet these objectives. 

5.1.1 Spatial extent and resolution

Spatial extent is the total area under consideration for a CCVA. 
If a specific area such as a country, subnational unit or site is 
specified as the objective of a CCVA, then that area will often 
form the spatial extent of the analysis. If the focal species’ 
vulnerability is not to be over-estimated, it is important to 
include areas that are contiguous with or close to the species’ 
present range and those that may become climatically suitable 
for the species in future. 

When using many correlative modelling approaches, however, 
spatial extent should include at least the entirety of a focal 
species’ geographical distribution, thereby encompassing the 
full range of climatic conditions in which it currently occurs. 
Depending on the time frame, it may be necessary to include 
areas quite distant from the current distribution to identify 
future habitat. Including a large spatial extent is important, 
firstly, because if only parts of the distribution of a focal species 
are considered, estimates of niche characteristics such as niche 
breadth are likely to be underestimated and misrepresented, and 
are thus likely to result in overestimated vulnerability. Secondly, 
since the magnitude of projected climate changes is not uniform, 
some sites, countries and regions are projected to experience 
relatively limited changes, whereas others are projected to 
experience conditions unlike those found currently in any part of 
the given area today by the end (and in many cases the middle) of 
the 21st century. If the spatial extent is set to a limited part of the 
focal species’ range, assessments may overestimate species’ 
vulnerability. If that area is projected to contain only novel climates 
(i.e., with combinations of variables not found in the area today) 
then in the future it will appear unsuitable for all species currently 
present in the area, even though that combination of conditions 
may well occur currently outside the focal area. The correlative 
CCVA results are therefore likely to be an overestimation of 
species’ vulnerability and fail to account for influx of species not 
currently occurring in the focal area. If, however, the projected 
climate changes within the limited area considered are of smaller 
magnitude than those across the species’ range as a whole, then 
the assessment may underestimate vulnerability. 

Spatial grain or resolution is relevant when a CCVA is to be 
performed using a modelling approach that requires gridded 
data, and refers to the area or linear dimension(s) of the grid 
cells used. The appropriate grain size will often be determined 
by the resolution of the available data such that the essential 
dataset with the coarsest resolution generally determines the 
limit to which grain size can be reduced. For example, whilst 
a digital elevation model may be available on a 50 m grid (i.e., 
50 x 50 m), if species’ distribution data are recorded for a 1 km 
grid, (i.e., 1 x 1 km) then the latter is the finest practical grain 
size for most analyses. 

Whilst a very fine grain (e.g., 10 m) might be used in principle, 
in practice a number of considerations will determine the 
appropriate resolution. Species’ distribution data may have been 
recorded as presence/absence in cells of a grid at a particular 
grain size or be derived from point records with limited spatial 
precision; the grid resolution or point precision then effectively 
determines the minimum grain size at which modelling can 
be performed. The scale of spatial heterogeneity in the region 
being considered will also influence the appropriate grain size; 
a coarser grain may present few problems in areas of relatively 
low spatial heterogeneity (e.g., flat terrain or uniform land-
surface properties), whereas finer grains may be necessary in 
areas of higher spatial heterogeneity (e.g., topographically 
complex, varying land-surface properties). 

In many cases the overall extent of the species’ range will impose 
a practical limit on the grain size because of the computational 
demands of finer grains. Moving from a 0·5° to a 30” grid 
increases by a factor of 3,600 the number of grid cells for which 
data must be stored and processed, and hence increases both 
computation time and memory requirements for modelling by 
at least this factor. Even if computation time scales only linearly, 
a model taking 1 second to fit at 0·5° will require 1 hour to fit at 
30”, whilst if processing scales by the square of the data size, as it 
often does, then the 30” model will take 150 days to fit.

Additional issues need to be taken into account when adopting 
finer grains. Firstly, whereas the majority of the spatial patterns 
in a species’ distribution and abundance at grain sizes greater 
than ~20 km can generally be explained by bioclimatic variables 
alone (Luoto et al., 2007), at finer grains it will generally be 
necessary also to include non-climatic variables related to 
habitat availability (e.g., land cover, geology, soil type, 
hydrological features). At very fine grains, however, habitat is 
less important and microclimate becomes the dominant factor 
determining the distribution and abundance patterns of species 

5. Using CCVAs and interpreting 
their results
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that experience the boundary-layer climate rather than the 
macroclimate (Gillingham et al., 2012a, 2012b). Furthermore, 
modelling such species at coarser grains can lead to a severe 
over-estimation of their vulnerability to climate change 
(Gillingham et al., 2012a). 

In this context it is important to note that the interpolation of 
climatic variables performed to produce the finest grain datasets 
generally available assumes that grid cells are flat and 
uninfluenced by their neighbours. Even at the 30” grain of the 
WorldClim dataset it is arguable that topographic factors such 
as slope and aspect ought to have been taken into account. 
Already at this grain (0.855 km2 at the equator; 0.000126 km2 
at the poles) the effect of insolation on temperature can be 
extremely important and is determined principally by slope 
and aspect. These topographic variables also influence drainage 
patterns, and hence the redistribution of precipitation that runs 
off rather than percolating into the soil. In many high-relief 
landscapes the shading effect of surrounding areas of higher 
elevation further impacts upon local temperatures, as do 
phenomena such as cold-air drainage and lake effects (see 
Bennie et al., 2008, 2010; Maclean et al., 2012; Hodgson et al. 

For species occupying habitats with short vegetation, or the 
tops of forest canopies, models have been developed to estimate 
microclimatic conditions based on macroclimate records, 
taking into account topographic factors such as slope, aspect 
and shading by adjacent areas at higher elevation (Bennie et al., 
2008, 2010). In principle such models might be extended to 
estimate microclimatic conditions under forest canopies where 
temperatures experienced by understorey species generally are 
cooler and humidity higher than in open areas (De Frenne et 
al., 2013; Hardwick et al., 2015). As a “rule of thumb”, such 
approaches ought to be applied to generate estimates of relevant 
microclimatic variables in any CCVA or other study that uses a 
grain size of ~1 km or less. In order to do so, however, it should 
be noted that a suitably fine-grained digital elevation model 
(DEM) will be required for the study area to enable estimation 
of the necessary topographic variables. It is also worth noting 
that at fine spatial scales, increased stochasticity in the data will 
mean that model performance may appear worse than when 
larger spatial scales are used. 

5.1.2 Time frames

Temporal extent refers to the time frame under consideration 
(e.g., climate changes by 2050 or 2100). As discussed in Section 
3 (Setting climate change vulnerability assessment goals and 
objectives), this will be informed by assessors’ needs, the biology 
(e.g., generation length) of focal taxa, and the length of the 
temporal time series of projected climatic data that are available 
(mostly to 2100 but some IPPC AR5 simulations extend to 2300).

Temporal resolution refers to the unit of time sampled within 
the temporal extent considered (e.g., daily, monthly, annual). A 
temporal resolution of less than annual will rarely be required 

for a CCVA, as only a minority of species likely to be considered 
have a generation length of less than a year. Temporal resolution 
should not be confused with the period which relevant climatic 
variables may represent; the mean temperature of the warmest 
month of the year may, for example, be a relevant variable, 
for which an annual time series will enable a CCVA to be 
performed with annual temporal resolution.

5.1.3 Climate datasets

The choice of which projection(s) of future climatic conditions 
to use is one of the most important in CCVA (Snover et al., 
2013). That decision in turn is influenced by four key questions: 
(i) which model(s) of the climate system should be used? 
(ii) which emissions scenario(s) are appropriate? (iii) which 
historical or baseline climate dataset is suitable? and (iv) which 
bioclimatic variables should be used?

5.1.3.1 General Circulation Models (GCMs)
Choice of climate model should favour those most recently used 
and recommended by the IPCC (e.g., the latest IPCC Assessment 
Report), and that are either fully coupled atmosphere-ocean 
general circulation models (AOGCMs, e.g., HadCM3 (Gordon 
et al., 2000) or preferably earth system models (ESMs, e.g., 
HadGEM1 (Pope et al., 2007) that typically have improved 
representations of land-surface atmosphere interactions, as well 
as coupled simulations of terrestrial vegetation cover. Where 
the spatial extent of the planned CCVA is relatively limited, 
and especially in regions of complex topography, a Regional 
Climate Model (RCM (Morales et al., 2007), e.g., PRECIS) is 
likely to provide more accurate projections, provided that the 
boundary conditions used are from an appropriate AOGCM 
or ESM simulation, because RCMs operate mechanistically 
on horizontal resolutions of tens, rather than hundreds, of 
kilometres. The island of Madagascar, for example, is spanned 
by over 300 RCM squares (of side 55 km) but only a dozen or 
so squares at a typical GCM resolution. 

The Coordinated Regional Climate Downscaling Experiment 
(CORDEX) has made available a series of regional datasets 
derived from RCM simulations. These are of continental scale 
and have a grain size of 0.44 DD (~55 km at the equator). Even 
regional models, however, are unable adequately to resolve 
fine-scale climatic variability across regions of high relief. A 
subsequent, non-mechanistic, downscaling step may therefore 
be desirable to recover fine-scale spatial variation at sub-RCM 
scales, as well as to remove model bias compared to the baseline 
climate data (see Section 5.1.3.5 (Understanding and preparing 
future climate scenarios). In most cases it will be preferable 
to carry out CCVA using equivalent projections from each of 
several (at least three) climate models. These models should be 
selected so as to encompass the range of uncertainty amongst 
models; choosing a number of models which each give 
projections close to the ensemble mean of all models included 
by the IPCC has little value, and simply increases the amount 
of computation required.
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Having made assessments using each climate projection, the 
model outputs may then be combined into an ‘ensemble’ or 
mean which is generally regarded as the main output, while 
the various individual assessments provide an indication of 
the spread of potential values and hence of uncertainty in the 
results. Note that combining the climate model projections in 
an ensemble mean climate projection at the outset and then 
making a single assessment is inadvisable, because this will 
provide no insight into the range of uncertainty in outputs. 
Since different models may generate qualitatively different 
circulation patterns, it could also result in an ensemble 
mean climate projection that is mechanistically unrealistic 
or physically impossible. For example, a major atmospheric 
circulation feature, such as a persistent front, a jet stream or 
the path of monsoon winds, can be simulated by different 
models to occupy markedly different geographical locations, 
especially if a major topographic feature, such as a mountain 
range, ‘steers’ the feature to one side or the other of that 
feature. Taking a mean of two such contrasting simulations 
will tend to obliterate the spatial patterns in climatic variables 
associated with the circulation feature, such as the steep spatial 
gradient in temperature associated with a persistent front or the 
concentration of rainfall associated with the path of monsoon 
winds, resulting in mechanistically unrealistic mean climatic 
patterns. Doing so also can cover up year-to-year variance, 
which may be an important driver of vulnerability.

5.1.3.2 Emissions scenarios
It is tempting to advocate that greenhouse gas emissions 
scenarios should be selected to represent a plausible range of 
possible futures; alternatively, adoption of the precautionary 
principle might be advocated. In support of the latter 

approach, the evidence of the past 25 years is that emissions 
have continued more or less along the worst case trajectory 
considered plausible by the IPCC in 1990 (Raupach et al., 
2007). Hence it can be advocated that one should take the 
worst-case amongst plausible emissions scenarios (i.e., that 
corresponding more or less to ‘business-as-usual’) as the basis 
for performing a CCVA. Whilst some may argue that this 
is likely to exaggerate the problems faced by species and by 
biodiversity generally, improvements in climate models over 
the same period have not reduced the magnitude of disparities 
between climate changes projected by different models and 
under different emissions scenarios. Indeed, if anything the 
upper bounds on the range of uncertainty of future climate 
change magnitudes have increased (Stainforth et al., 2005). 
Add to that the acknowledged fact that a number of key 
positive feedbacks in the climate system, notably the effects of 
the snow-vegetation interaction on the snow-albedo feedback 
at higher latitudes, and the complex soil-moisture-vegetation-
precipitation feedback in semi-arid areas such as the Sahel, 
are not adequately represented in current climate models, and 
the argument for adopting the precautionary principle when 
selecting plausible emissions scenarios to use when performing 
CCVAs is strong.

Whichever approach to selecting emissions scenarios is 
adopted, it is important that only potentially realistic scenarios 
such as those developed over the past ~25 years by the IPCC 
should be included. The Representative Concentration Pathway 
(RCP) scenarios used in the IPCC’s Fifth Assessment Report 
(IPCC, 2013a) should be favoured wherever possible over the 
older SRES scenarios used in the Fourth Assessment Report 
(IPCC, 2007b). The earlier IS92 and SA90 scenarios should 
generally no longer be used since evidence that emissions since 
1990 have emerged as close to the highest ‘business as usual’ 
SA90 scenario means that the emissions range they consider is 
not realistic. 

IPCC’s Fifth Assessment Report includes four trajectories 
for atmospheric emissions and radiative forcing in the 21st 
century: RCP 2.6, RCP 4.5, RCP 6 and RCP 8.5 (the forcing 
in W.m2 determines the number proceeding RCP). Most 
optimistically, RCP 2.6 assumes that greenhouse gas emissions 
are multilaterally reduced with immediate effect, such that 
atmospheric concentrations peak and decline by the year 2100, 
with the global mean temperature anomaly remaining below 
2  °C relative to pre-industrial levels. Although technically 
feasible (Vuuren et al., 2011), this trajectory is unlikely 
given recent trends. The other scenarios project global mean 
temperature anomalies of up to ~5 °C by 2100. In terms of 
temperature anomaly, the closest SRES equivalents are B1 
(RCP 4.5) and A1F1 (RCP 8.5) (Rogelj et al., 2012). If the 
precautionary principle is not adopted, then inclusion of at 
least three scenarios is recommended and two is regarded as 
the absolute minimum number to consider, in which case they 
should represent the overall range of plausible uncertainty about 
future emissions (i.e., a ‘high’ and a ‘low’ emissions scenario, 

Clownfish (family: Pomacentridae) have close relationships with 
sea-anemones, relying on them for protection. Clownfish are 
believed to locate their particular host sea-anemone using a sense 
of smell, but laboratory experiments suggest that this sense may be 
impaired by more acidic ocean water. In addition, both clownfish 
and sea-anemones depend on coral reefs for habitat, and hence 
are threated indirectly by reef bleaching and ocean acidification 
impacts on them. © Flickr - Alfonso Gonzalez

5. Using CCVAs and interpreting their results
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e.g., RCP8.5 and RCP4.5). If the precautionary principle is 
adopted, then RCP8.5 is recommended.

In contrast to working with climate models, it is almost always 
inappropriate to calculate any kind of ensemble mean of the 
CCVA results for two or more emissions scenarios. Instead, 
individual CCVAs should be made for alternative emissions 
scenarios so as to obtain insight into the uncertainty in the 
CCVA that relates to uncertainty about future emissions. There 
is a fundamental difference between this uncertainty related to 
unknowns about future human population growth, standards 
of living and global economic, energy and other policies, and 
the uncertainty related to different climate models, which 
arises from uncertainties in climate science, differences in 
model formulation and the need for simplification of systems 
by all models.

5.1.3.3 Historical (baseline) datasets
The most widely used datasets representing baseline climate 
observations, as well as three satellite-derived rainfall datasets 
with potential for use, are shown in Table 8. Choice of dataset 
will depend upon the spatial extent and grain size at which 
the CCVA is to be performed, as discussed above under 
Section 5.1.1 (Spatial extent and resolution), as well as the 
most appropriate time period in relation to the period when 
species’ data were collected. In particular, where mean climatic 

values for “custom” periods are required, the best available 
option is to use the 0·5° CRU TS3.22 dataset (Harris et al., 
2014) of monthly means for 1901–2014, complemented, if 
appropriate, by rainfall and/or temperature data from one of 
the satellite-derived datasets (recent decades only). In the case 
of the datasets based on observed climate records from weather 
stations around the world, it is important to recognize that 
such stations are more sparsely distributed in the developing 
world, particularly in the tropics (e.g., Saharan and tropical 
Africa), and also are much sparser at higher elevations globally. 
Projections for such regions made using these baseline datasets 
are thus subject to greater uncertainty.

5.1.3.4 Bioclimatic variables
The choice of bioclimatic variables used for a CCVA should 
be tailored to the focal species. Although there are very few 
species for which autecological studies have identified the 
precise bioclimatic variables that are important and/or their 
mechanisms of action (e.g., Pigott & Huntley, 1981), the 
general biological knowledge accumulated for a range of 
taxonomic groups and climatic regions, as well as the results 
from the many studies that have fitted species-climate envelope 
models of various types, provides a basis for an informed and 
intelligent choice of bioclimatic variables for most species. As 
a general observation, notwithstanding many studies in which 
it has been used, mean annual temperature is unlikely ever 

Table 8. Examples of the most widely used and generally available climate datasets representing historical (baseline or recent 
past) climatic conditions.

Dataset name Spatial extent Temporal extent Spatial resolution Data available at: (URL)

Datasets using meteorological station data interpolated with respect to longitude, latitude and elevation

CRU CL v.2.1	
(Mitchell et al., 2004)

Europe 1961–90	
(30-year means)

10 minutes	
(~18.4 x 18.6 km = 342 km2)*

Available on request

CRU TS v.3.22
(Harris et al., 2014)

Global 1901–2013	
(annual data)

0.5 degrees
(~55 x 56 km = 3,077 km2)*

http://www.cru.uea.ac.uk/cru/data/hrg/

WorldClim
(Hijmans et al., 2005)

Global 1950–2000	
(period means)

30 seconds	
(~922 x 928 m = 0.855 km2)*

http://www.worldclim.org/ 

Prism (Daly et al., 
2002)

United States 1895–ongoing 30 seconds	
(~922 x 928 m = 0.855 km2)*

http://prism.oregonstate.edu/

Datasets using satellite remote-sensed data, usually processed through some form of model that often includes assimilation of data 
from meteorological stations

CHIRPS v2.0
(Funk et al., 2014)

50°S–50°N	
(Rainfall only)

1981–present	
(daily, 10-day, monthly 
& annual data)

0.05 degrees	
(~5.5 x 5.6 km = 30.8 km2)

http://chg.geog.ucsb.edu/data/chirps/#plus7 

MODIS Land Surface 
Temperature/Emissivity	
Global

Global March 2000–present
(daily, 8-day,
monthly)

1 km to 0.05 degrees http://modisland.
gsfc.nasa.gov/temp.html 

TAMSAT/TARCAT v2.0	
(Maidment et al., 2014; 
Tarnavsky et al., 2014)

Africa	
(Rainfall only)

1983–present	
(10-day, monthly & 
seasonal data)

0.0375 degrees	
(135 seconds) 
(~4.15 x 4.17 km = 17.3 km2)*

http://www.met.reading.ac.uk/~tamsat/cgi-
bin/data/rfe.cgi?type=clim 

TRMM/3B42	 50°S–50°N	
(Rainfall only)

March 2000–present	
(daily, 10-day, 30-day)

0.25 degrees	
(27.6 x 27.8 km = 769 km2)

http://pmm.nasa.gov/data-access/
downloads/trmm 

*Average near the equator
CRU: Climate Research Unit
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to be mechanistically important (Huntley, 2012; Platts et al., 
2013b). In contrast, coldest and/or warmest month means 
or annual extremes (where these are available), and annual 
thermal sums above or below relevant thresholds, have well 
understood mechanistic roles in determining the performance 
and/or survival of species from a wide range of taxonomic 
groups. It may also be useful to include species or taxon-
specific measures that relate to particular periods of high 
sensitivity to weather conditions, such as the breeding season 
(Pearce-Higgins et al., 2015).

Similarly, although mean annual or seasonal precipitation values 
have often been used, there is little, if any, evidence showing 
that the amount of precipitation is mechanistically relevant to 
any species. Instead, higher plant species respond principally to 
the balance between precipitation and evaporation, seasonally 
or annually, as measured by such variables as precipitation 
minus evaporation (P–E) or the ratio of actual to potential 
evapotranspiration (AET/PET). Members of other taxonomic 
groups, in contrast, may be influenced principally by the 
distribution of precipitation through the year (e.g., number of 
rain days or wet days); many amphibians, leafy liverworts and 
filmy ferns, for example, need their skin or foliage to remain 
moist, whilst some overwintering insects may be detrimentally 
affected by wet conditions which may promote fungal attack 
(Conrad et al., 2003). Other variables become important 
only under certain climatic regimes or for particular species. 
For example, in seasonally arid tropical regions, the intensity 
of the dry or wet season is often extremely important; while 
for many boreal and Arctic species, seasonal snow depth, for 
which snow water equivalent (SWE) provides an appropriate 
and widely available proxy, is important. Given the importance 
of altered inter-species interactions in causing climate change 
impacts, we note that climatic measures important for lower 
trophic levels may also affect populations and distributions of 
higher predators (e.g., Huntley et al., 2008; Pearce-Higgins et 
al., 2015).

For some taxa no specific information is available to guide 
selection of bioclimatic variables. For tropical species, the 
best default choice is a combination of coldest and warmest 
month mean temperatures, annual ratio of actual to potential 
evapotranspiration and a measure of the intensity of the dry/
wet season. Measures of biseasonality (i.e., measures of two 
rainy seasons in a year) may also be appropriate (e.g., ratio 
of water availability in the less wet rainy season to the more 
rainy season, length of the longest dry season). For temperate 
species, the best default bioclimatic variables would minimally 
be the coldest month mean temperature, annual thermal 
sum above 5°C and the annual ratio of actual to potential 
evapotranspiration. For some cool temperate species that 
have a ‘chilling’ requirement, a measure of the length of the 
period with temperatures below 0°C or the (negative) annual 
thermal sum below 0°C can be an important additional 
variable. For Arctic and boreal species, snow water equivalent 
(SWE) might be added, and for the highest latitude species, 

the annual thermal sum above 0°C may be substituted for 
that above 5°C.

It is important to note that correlative models giving a high 
goodness-of-fit and/or statistical significance can be, and 
often have been, fitted using climatic variables that are not 
mechanistically relevant. Such good fits generally reflect 
correlations between the mechanistically relevant variables and 
those mechanistically irrelevant variables used in the model. 
However, such correlations are not persistent in space as one 
moves from one climatic regime to another (see e.g., Huntley, 
2012; Dormann et al., 2013; Huntley et al., 2014) and also 
cannot be expected to be persistent in time as climatic patterns 
change. As a result, models fitted using inappropriate variables 
will often give inaccurate projections for future climates. It is 
for this reason that it is extremely important to attempt, as 
far as possible, to identify and use only variables for which a 
plausible mechanistic role can be identified.

As a general rule, no more than one bioclimatic variable should 
be used for every five species occurrence records or ‘presence’ 
grid cells (IUCN SSC Standards and Petitions Subcommittee, 
2016). This avoids the risk of model ‘over-fitting’ which occurs 
where highly complex models begin to describe or ‘fit’ random 
error or noise, instead of the relationship between meaningful 
variables. Some correlative methods (e.g., Maxent and Boosted 
Regression Trees) automatically select a parsimonious number 
of variables, and in such cases users need not be concerned 
with supplying too many bioclimatic variables. However, 
especially with such methods, where the variable selection 
algorithms select on the basis of statistical contribution/
power, it is extremely important that only variables that are 
at least potentially mechanistically relevant are included in 
the overall set of variables. In cases where a limited number 
of variables must be selected and several are candidates, it is 
advisable to investigate the correlations amongst them (e.g., 
through Principal Components Analysis) and select a reduced 
number of uncorrelated variables, thereby reducing potential 
problems of co-linearity (Araújo & Guisan, 2006; Dormann 
et al., 2013), or to condense multiple correlated predictors into 
uncorrelated PCA axes (e.g., Loarie et al., 2008).

5.1.3.5 Understanding and preparing future climate 
scenarios
Climate models, whether General Circulation Models, 
Regional Circulation Models or Earth System Models, can be 
used to simulate past, present or future climatic conditions. 
In all cases, however, the model simulations will give biased 
estimates of climatic variables because no model is a complete 
and precise representation of the climate system. In order to 
construct changed climate scenarios from the model outputs, it 
is therefore necessary to take certain minimal steps to remove 
or reduce these model biases. 

The most common approach to this assumes that these biases 
will not change when a model is used to simulate an altered 

5. Using CCVAs and interpreting their results
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climate, and thus that any changes in conditions between a 
simulation by the model of present climate and of some altered 
climate will be robust. Changed climate scenarios for CCVA 
are thus best prepared by first using a model’s simulations of 
‘present’ climate and of the altered climate of the selected time 
in the future to calculate the projected change or ‘anomalies’ 
in the climatic variables of interest. The ‘present’ in this case is 
that period covered by the chosen baseline climatic dataset. The 
changes, or anomalies, are then combined with the baseline 
dataset to obtain the required scenario of projected future 
climatic conditions. This ‘change-factor’ or ‘delta’ procedure 
for addressing biases in climate models when developing future 
climate scenarios for impact studies is well-established, and has 
been described in the literature in relation to the use of correlative 
models to project species’ potential future distributions on a 
number of occasions (e.g., Huntley et al., 1995, 2006, 2007) 
and also in relation to the generation of spatially downscaled 
climate change scenarios for various regions (e.g., Ramirez-
Villegas & Jarvis, 2010; Tabor & Williams, 2010; Platts et al., 
2015); it is discussed in more detail below.

Where they are available, users may prefer to select projections 
from lists of available climate datasets, but in doing so they 
should take care to establish that these have been constructed 
using appropriate methods. Alternatively, users may need to 
carry out the following steps themselves. In either case, it is 
important to understand the way that climate model outputs 
and baseline climatic data are used together to derive future 
climate scenarios. 

Step 1. Calculate projected changes or anomalies from 
climate model outputs

To work out the degree of change projected by a climate model 
for a particular emissions scenario and time period, ‘anomalies’ 
or ‘change fields’ are calculated for each climatic variable of 
interest. Anomalies are generally calculated as the change 
between the model’s simulations of mean values of the climatic 
variable for ‘present’ (ideally the same period as is spanned by 
the baseline dataset to which the anomalies will be applied) and 
for the selected future time period, and are calculated for each 
climatic variable of interest and for all model grid cells relevant 
to the area of interest.

For temperature variables, anomalies are normally calculated 
as the arithmetical difference between future and ‘present’ 
values (i.e., additive anomalies; e.g., if a cell’s ‘present’ July 
mean temperature is 20 oC and the projected future value is 
22oC, the anomaly will be +2oC). For precipitation-related 
variables such additive anomalies, although sometimes used 
(Tabor & Williams, 2010), generally are not recommended 
because climate models often have consistent ‘wet’ or ‘dry’ 
biases that result in large differences between models in 
absolute precipitation changes. This can readily be overcome 
by calculating anomalies as the ratio of the future to ‘present’ 
precipitation (i.e., multiplicative anomalies; e.g., if a cell’s 

‘present’ mean January precipitation is simulated by two models 
to be 200 mm and 100 mm and the projected future simulated 
values are 300 mm and 150 mm, the anomaly will be 1.5 in 
both cases, whereas the additive anomalies would be 100 mm 
and 50 mm respectively). Problems arise if the projected future 
precipitation value is exactly zero; this is most readily overcome 
by adding a small amount (e.g., 1 mm) to both the ‘present’ 
and future values (Ramirez-Villegas & Jarvis, 2010; Platts et 
al., 2015). Because all climate models differ in their inherent 
biases, anomalies must be calculated separately for each model, 
as well as for each emissions scenario and time period being 
considered.

Step 2. Combine anomalies with baseline data to obtain 
future climate scenario

Having obtained the anomaly fields, the second step is to use 
these to calculate future climate scenarios by applying relevant 
anomalies to the baseline climatic data, either additively or 
multiplicatively, as described above. The selection of baseline 
climatic data at an appropriate grain was discussed above in 
Section 5.1.1 (Spatial extent and resolution). If, as is likely, 
the grain of the climate model, and hence of the derived 
anomalies, is coarser than that of the baseline dataset selected 
as appropriate for the CCVA, it is necessary to downscale 
the anomalies appropriately so as to obtain values to apply 
to the baseline data. Downscaling is usually performed by 
fitting spline surfaces to the anomalies in longitude-latitude 
space and using these surfaces to obtain interpolated values 
for the cells of the target grid. This approach is generally 
preferable to performing simple bi-linear or distance-weighted 
interpolation of the anomaly values for the climate model grid 
cells surrounding the target grid cell in the observed data, 
because of the generally large differences in grain and the 
inappropriateness of an assumption that anomalies are varying 
spatially in a simple linear fashion. 

In terms of spatial downscaling, it is worth emphasizing 
that the change-factor method described here assumes 
temporal stasis in local spatial patterns of climatic variation, 
as inferred from the higher resolution baseline climatic data. 
For example, within an RCM grid square, and depending 
on the elevation contribution in the above interpolation, 
present patterns of temperature change with elevation, or of 
variation in precipitation arising from interactions between 
the orientation of mountain slopes and the prevailing wind 
direction, will be preserved. This assumption of temporal stasis 
of local spatial patterns is likely to be valid unless the GCM 
simulates changes (e.g., shifts in position, changes in strength, 
changes in orientation) in major features of the atmospheric 
and/or ocean circulation that strongly influence the climate of 
the region of interest. Even in such cases, however, until such 
time as global simulations of climate are available with a spatial 
resolution as high as or higher than that achieved by current 
RCMs, this assumption generally represents the most practical 
and pragmatic approach.
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In regions with sufficiently dense observational time-series 
of climatic data, however, an alternative to change-factor 
downscaling is directly to correlate RCM outputs with local 
climatic conditions over time (statistical downscaling), and 
to use those relationships to project future fine-scale changes, 
correcting where appropriate for scenario-based changes in 
land-surface feedbacks (e.g. cloud base shifting upslope due 
to deforestation) or in the microclimatic regulation provided 
by vegetation or snow cover. Such statistical downscaling 
relies upon an assumption that the relationships between 
fine-scale climatology and features of the climate system at 
coarser resolution will persist under changed general climatic 
conditions; this is both untested and unlikely.

5.1.4 Species distribution data

For CCVA approaches that rely heavily on occurrence records 
for characterizing species’ climatic tolerances (i.e., correlative 
and mechanistic niche modelling approaches), it is particularly 
important that these data are of good quality (IUCN SSC 
Standards and Petitions Subcommittee, 2016). Occurrence 
records should have accurate locations, the acceptable spatial 
precision of which will be determined by the spatial resolution 
at which the CCVA is to be performed (e.g., accurate locations 
with a precision of ≤~100m will be required for an analysis at 
a resolution of 1 km2). For best accuracy, the projection (e.g., 
WGS84) should be specified. Identifying spatially inaccurate 
records is often difficult, but two procedures can help. Firstly, 
mapping the records (in a GIS or Google Earth) will allow 
anomalous or outlying records to be identified and investigated 
(Pearson, 2007). Comparison with the expert-mapped 
distribution polygons (see Table 6 for examples of sources) 
or published maps, where available, may also be helpful, but 
care needs to be taken that accurate records are not removed 
unnecessarily, simply because they are located outside of such 
distribution polygons. Where available, good quality survey or 
atlas data, or a set of well-validated records, is likely to be more 
accurate and useful than an expert-based polygon. Secondly, 
where records give altitude as well as longitude and latitude, 
overlaying the longitude-latitude location onto a high-resolution 
DEM allows the consistency of the altitude to be checked; 
records for which the match in altitude is unacceptably poor 
can then be investigated or rejected.

Further uncertainty can be introduced into analyses if 
occurrence data are spatially biased. Many datasets, for 
example, will have higher densities of records from areas closer 
to human settlements or roads. This can introduce important 
biases with respect to the sampling of environmental space 
that will result in inaccurate models. However, if information 
on such sampling biases can be collected, then appropriate 
selection of absence data can allow modelling approaches to 
take some account of such biases (see Phillips et al., 2009). 
When this is not possible, other methods such as thinning 
(subsampling records) in geographic space (Aiello-Lammens 
et al., 2015) or environmental space (Varela et al., 2014), or 

weighting presences by the inverse of their local density (Stolar 
& Nielsen, 2015) can be used to remove bias.

Identification uncertainty should be minimized. For less 
well-known or difficult-to-identify taxa, occurrence records 
should ideally be associated with vouchered specimens or, 
if appropriate, photographs that have been identified by 
relevant taxonomic experts, although modelling approaches 
increasingly allow uncertainty in record identification to 
be accounted for (Johnston et al., 2015). Data from large 
distribution databases (e.g., GBIF, HerpNET) may be used, 
but only with caution and following careful review for accuracy, 
coverage and sampling intensity (IUCN SSC Standards and 
Petitions Subcommittee, 2016). Although concern is sometimes 
expressed about the validity of records derived from citizen 
science approaches (e.g., e-Bird, BirdTrack, SABAP), in practice 
such schemes often provide the only practicable manner to 
obtain large-scale and extensive biological recording data, and 
include inbuilt verification mechanisms to ensure that unusual 
records are vetted by experienced recorders and verifiers. 
Such data have underpinned the majority of assessments of 
distribution and projected range change for many bird species 
(Huntley et al., 2008). 

Further discussion on this topic is presented below in 
Section 6.1 (Uncertainty from species’ distribution and 
abundance data).

5.1.5 Species trait data

There is growing recognition and understanding of the role 
that species’ biological characteristics play in exacerbating or 
mitigating sensitivity and adaptive capacity to climate change 
(Jiguet et al., 2007; Dawson et al., 2011; Nicotra et al., 2015). 
These include traits relating to species physiology, demography 
and ecology (Keith et al., 2008; Visser, 2008; Williams et al., 
2008). Studies examining associations between biological traits 
and climate change-driven changes in population abundance, 
extinction risk and range shifts for a range of taxa contribute to 
a growing knowledge base (e.g., Cardillo et al., 2008; Murray et 
al., 2009; Thaxter et al., 2010; Angert et al., 2011; Newbold et 
al., 2013; Chessman, 2013; Pearson et al., 2014a; Estrada et al., 
2015). These trait associations provide the basis for using traits 
for CCVA, and they present, at this stage, one of the few ways 
of accounting for the multiple pathways in which species may 
be impacted by climate change. Because they require ecological 
knowledge without strong statistical and modelling expertise, 
they are being adopted by many conservation organizations, 
particularly as it is possible to make assessments for large numbers 
of species relatively rapidly. A number of recent CCVAs have 
adopted a trait-based approach to assessing species’ vulnerability 
to climate change at either regional (Gardali et al., 2012; Trivino 
et al., 2013) or global (Foden et al., 2013) scales. We discuss the 
application of the approach, as well as some of its challenges 
and uncertainties, below, and in Section 6.5 (Uncertainty from 
biological trait and demographic data).

5. Using CCVAs and interpreting their results
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5.1.5.1 Trait selection
To date, selection of traits for both trait-based and mechanistic 
models has been largely expert-based, drawing on a priori 
assumptions about the mechanisms by which focal species 
are likely to be impacted. An example of a framework for 
guiding such trait selection is shown in Table 9, and examples 

of the types of traits used in five recent trait-based CCVAs 
are shown in Table 10. Since this expert-based approach may 
introduce certain biases (Burgman et al., 2011), particularly 
in combination with the omissions of certain traits due to 
the realities of data availability and collection, we encourage 
users to document the rationales for their trait choices, desired 

Table 9. Trait categories associated with species’ heightened sensitivity and low adaptive capacity to climate change (from 
Foden et al., (2013) and Estrada et al. (2016)). Assessors may choose, for their focal species, the one or more traits that describe each 
category (e.g., under D, for corals, users might select “susceptible to bleaching”).

SENSITIVITY

A. Specialized habitat and/or microhabitat requirements
As climate change-driven environmental changes unfold, species that are less tightly coupled to specific conditions and requirements are likely 
to be more resilient because they will have a wider range of habitat and microhabitat options available to them. Sensitivity is further increased for 
species with several life stages, each requiring different habitats or microhabitats (e.g., water-dependent larval amphibians). We note, however, 
that this does not hold in all cases, and extreme specialization may allow some species to escape the full impacts of climate change exposure (e.g., 
deep sea fishes).

B. Environmental tolerances or thresholds (at any life stage) that are likely to be exceeded due to climate change
Species with physiological tolerances that are tightly coupled to specific environmental conditions (e.g., temperature or precipitation regimes, water 
pH or oxygen levels) are likely to be particularly sensitive to climate changes (e.g., tropical ectotherms) (Deutsch et al., 2008; McCain, 2009). 
However, even species with broad environmental tolerances may already be close to thresholds beyond which physiological function quickly breaks 
down (e.g., drought-tolerant desert plants (Foden et al., 2007)).

C. Dependence on environmental triggers that are likely to be disrupted by climate change
Many species rely on environmental triggers or cues to initiate life stages (e.g., migration, breeding, egg laying, seed germination, hibernation 
and spring emergence). While cues such as day length and lunar cycles will be unaffected by climate change, those driven by climate and season 
may alter in both their timing and magnitude, leading to asynchrony and uncoupling with environmental factors (Thackeray et al., 2010) (e.g., 
mismatches between advancing spring food availability peaks and hatching dates (Both et al., 2006)). Climate change sensitivity is likely to be 
compounded when different sexes or life stages rely on different cues.

D. Dependence on interspecific interactions that are likely to be disrupted by climate change
Climate change-driven alterations in species’ ranges, phenologies and relative abundances may affect their beneficial inter-specific interactions 
(e.g., with prey, pollinators, hosts and symbionts) and/or those that may cause declines (e.g., with predators, competitors, pathogens and 
parasites). Species are likely to be particularly sensitive to climate change if, for example, they are highly dependent on one or few specific resource 
species and are unlikely to be able to substitute these for other species (Møller et al., 2011).

E. Rarity
The inherent vulnerability of small populations to Allee effects and catastrophic events, as well as their generally reduced capacity to recover 
quickly following local extinction events, suggest that many rare species will be more sensitive to climate change than common species. Rare 
species include those with very small population sizes, as well as those that may be locally abundant but are geographically highly restricted.

LOW ADAPTIVE CAPACITY

F. Poor dispersal ability: 
Intrinsic dispersal limitations: Species with low dispersal rates or low potential for long distance dispersal (e.g., land snails, ant and raindrop 
splash-dispersed plants) have lowest adaptive capacity since they are unlikely to be able to keep up with a shifting climate envelope. 
Estrada et al. (2016) outline a framework highlighting how four key range-shift processes are affected by seven trait types, namely (with traits in 
brackets): (i) emigration (site fidelity); (ii) movement (movement ability); (iii) establishment (avoidance of small population effects, persistence 
under unfavourable conditions); and (iv) proliferation (reproductive strategy; ecological generalization and competitive ability (these three traits 
apply to processes (iii) and (iv))).

Extrinsic dispersal limitations: Even where species are intrinsically capable of long distance or rapid dispersal, movement and/or successful 
colonization may be reduced by low permeability or physical barriers along dispersal routes. These include natural barriers (e.g., oceans or rivers 
for terrestrial species), anthropogenic barriers (e.g., dams for freshwater species) and unsuitable habitats or conditions (e.g., ocean currents and 
temperature gradients for marine species). Species for which no suitable habitat or ‘climate space’ is likely to remain (e.g., Arctic ice-dependent 
species) may also be considered in this trait set.

G. Poor evolvability:
Species’ potential for rapid genetic change will determine whether evolutionary adaptation can result at a rate sufficient to keep up with climate 
change-driven changes to their environments. Species with low genetic diversity, often indicated by recent bottlenecks in population numbers, 
generally exhibit lower ranges of both phenotypic and genotypic variation. As a result, such species tend to have fewer novel characteristics that 
could facilitate adaptation to the new climatic conditions. 

Since direct measures of species’ genetic diversity are few, proxy measures of evolvability such as those relating to reproductive rates and outputs, 
and hence the rate at which advantageous novel genotypes could accumulate in populations and species (Chevin et al., 2010), may be useful. 
Evidence suggests that evolutionary adaptation is possible in relatively short timeframes (e.g., 5 to 30 years (Bradshaw & Holzapfel, 2006)) but 
for most species with long generation lengths (e.g., large animals and many perennial plants), this is likely to be too slow to have any serious 
minimizing effect on climate change impacts.



41

traits or mechanisms that were omitted, and where possible, 
to account for uncertainty in trait choice assessments through 
sensitivity analyses.

A key requirement in order to implement the trait-based 
approach is a database of species traits. For many taxonomic 
groups, such information is increasingly being collated, and 
may be empirically available from various data sources and 
organizations (see Table 6 and Section 4.1, Step 3 (Species trait 
data)). However, for many species, particularly for less-well 
studied taxa, such information may be lacking, and obtaining 
it must therefore rely upon an expert-based assessment, or 
potentially, the use of data from similar species. This flexibility 
makes the use of trait-based assessments attractive, as they 
can be conducted for any species and location given either a 
database of traits, or a number of species experts. 

5.1.5.2 Trait threshold selection
Quantifying thresholds for categorizing the climate change 
vulnerability associated with each selected trait poses a major 
challenge to most trait-based methods. Thresholds of concern 
are clear for some traits (e.g., confined to a small island), but 
since most traits are described by continuous variables (e.g., 
body mass, fecundity, degree of habitat specialization), users 
must infer such thresholds. In rare cases, empirical studies are 
available to inform robust estimates of such thresholds (e.g., 
established growth performance curves and thermal extreme 
tolerances for Australian Drosophila (Overgaard et al., 2014)), 
but for most, users must make subjective choices based on their 
own observations, ecological understanding or even arbitrarily 
(e.g., the 25% worst-affected species, (Foden et al., 2013)). 
These challenges highlight the need for more empirical studies 
on species’ physiological limits.

5.1.5.3 Trait scoring
Trait-based assessments to date have tended to quantify the 
per-species climate change vulnerability associated for each 
trait in one of three ways. Species have been assigned scores for 
each trait (e.g., from -1 to 1 (Bagne et al., 2011), 1 to 3 (Gardali 
et al., 2012), or 0–3 (Thomas et al., 2011), ordinal categories 
(e.g., “High/Medium/Low” (Chin et al., 2010) or “High/Low” 
(Foden et al., 2013)); or ranks (e.g., based on a hierarchical 
decision framework (Smith et al., 2016)). 

i) To date little attention has been devoted toward scoring 
systems and the manner in which scores are combined 
(Willis et al., 2015), but these have important consequences 
for overall outcomes of TVA. A preliminary series of “best 
practices” for developing a scoring system includes these 
aspects:

ii) The number of graduations in the scoring system should 
reflect the amount of trait information available. For 
example, a finer scale (e.g., 0 to 10) allows for more nuanced 
distinction between trait states than a coarser scale (e.g., 
high/medium/low). Although it is conceptually easier to 
populate a scoring system with fewer graduations, coarser 
scales generally require more concerted thought about 
critical thresholds because the distinction between any 
given pair of scores is greater (e.g., on a zero-to-ten point 
system there is less relative difference between a score of 6 
versus 7, whereas on a 3-point low-medium-high scale there 
is much greater distinction between “high” and “medium” 
or “medium” and “low”). Regardless of the scoring system, 
assessors should clearly document selected trait thresholds 
and provide justifications where possible.

iii) The scoring system should include a “neutral” score 
above/below which climate change is expected to be 

Table 10. Examples of the traits considered by five trait-based CCVAs (adapted from Willis et al., 2015).

(Foden et al., 
2013)

(Garnett et al., 
2013)

(Gardali et al., 
2012)

(Thomas et al., 
2011)

(Graham et al., 
2011)

Habitat specialization X x X x

Dietary specialization x x

Environmental / climatic tolerance X x x

Inter-specific interactions affected X X

Sensitive to environmental triggers X

Rarity X x x

Dispersal X x

Evolvability X

Exposure X x x x

Reproductive/recruitment capacity X x x

Migratory status x

Other threats X

Body size x

Brain size x

5. Using CCVAs and interpreting their results



42

IUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change

harmful/beneficial to a species. Though climate change 
promises to cause large-scale disruption of species’ ecologies, 
not all effects will necessarily be negative; some species will 
benefit. Thus, it is important to reflect this potential in a 
scoring system and avoid assuming climate change will have 
only negative impacts. Even if no species in an assessment 
will actually benefit or be unaffected by climate change, 
neutral scores serve as a mental benchmark to anchor scores 
to a meaningful state (a state of no effect). They also allow 
for easier comparison between studies since a neutral score 
serves as a common denominator between different scoring 
systems. Inclusion of neutral scores is considered standard 
practice in fields where score-based systems are used as a 
basis for analysis (Ragin & Becker, 1992).

iv)	Assessors should collect and store data in forms that 
make re-assessment possible should the understanding 
of climate change mechanisms underpinning the 
trait threshold selection change. Climate science and 
vulnerability assessment are rapidly-advancing fields; even 
though decisions are being made that are relevant to time 
periods many decades in the future, our understanding of 
consequences of climate change progresses every year. Thus 
it is very likely that an active management program will 
need to update its assessment as time progresses (and our 
knowledge of what climate and species may do becomes 
greater).

v)	 Assessors should include measures of confidence in each trait 
score (e.g., Bagne et al., 2011; Thomas et al., 2011; Gardali et 
al., 2012). 

5.1.5.4 Calculating overall measures of vulnerability
Before combining trait scores into overall measures of climate 
change vulnerability, many authors have weighted the scores, 
either by expert judgement of trait importance (e.g., Graham et 
al., 2011; Gardali et al., 2012; Young et al., 2012) or according 
to confidence in score accuracy (e.g., Thomas et al., 2011). The 
resulting scores are then typically combined in one of two ways. 
The final score may be derived computationally (e.g., through 
additive (Bagne et al., 2011; Graham et al., 2011) or multiplicative 

(Gardali et al., 2012) rules; see below) in which case the overall 
CCVA output may be scores and, often resulting from these, 
fall into overall vulnerability categories (e.g., Young et al., 2012) 
or ranks. Overall scores may also be reached through a rule-
based logic framework which typically assigns species into 
overall vulnerability categories (e.g., Chin et al., 2010; Bagne 
et al., 2011; Foden et al., 2013). We encourage users to carry 
out sensitivity analyses to identify the uncertainty potentially 
introduced by their selected scoring system. 

Score-combining systems have received almost no attention 
in the CCVA literature even though, like scoring systems, they 
have a direct impact on the final outcome of an assessment 
(Willis et al., 2015). In general, there are two “levels” of scoring 
rules, one used to combine scores within a module (reflecting, 
for example, exposure, sensitivity, or adaptive capacity) and 
another across modules (combining exposure, sensitivity, and 
adaptive capacity). Combining rules reflect how traits interact 
to convey overall vulnerability. Though there are many ways to 
combine scores computationally, we review here two relatively 
common and simple rules based on addition and multiplication.

Additive rules (score #1 + score #2 + score #3 + …) reflect 
situations where traits do not interact and can stand in for one 
another to enhance vulnerability or counter one another to 
reduce vulnerability. For example, a plant species’ sensitivity 
might be reflected by scores for two traits, one reflecting 
the lethal effects of high temperature on pollen and another 
reflecting the need for low winter temperatures necessary for 
seed stratification to break dormancy in the spring. Using a 
summation rule assumes traits can substitute for one another 
to confer the same amount of sensitivity to climate change 
(e.g., the species could have the same sensitivity regardless 
of whether it was sensitive to high temperatures or lack of 
low temperatures). Mathematically, summation rules retain 
symmetry around neutral scores (e.g., on a 7-point scale 
from -2 to 2, with 0 as the neutral score, adding two scores 
yields a new scale from -4 to 4 with 0 still being neutral). In 
this context a “mean” rule that averages across scores has the 

This biodiversity conservation workshop in far northern Queensland included facilitated discussions in small groups about the challenges, 
opportunities and strategies for biodiversity conservation in the Wet Tropics in the light of the latest climate science. Researchers, local 
technical experts and experienced members from conservation based community groups participated in the discussions. © Terrain NRM
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same properties, though it also tends to reduce the influence 
of extreme scores, which would reflect the assumption 
that deleterious traits could offset the beneficial effect of 
combinations of others (and vice versa).

Multiplicative rules (score #1 * score #2 * score #3 * …) 
implicitly assume that traits can ameliorate or exacerbate the 
state of others. For example, dependence on a particular rare 
habitat is worsened when that habitat type becomes invaded due 
to climate-induced spread of non-native species. Multiplicative 
rules are not appropriate for all situations – to continue the 
example from above where a plant species is scored according 
to its sensitivity of pollen to high temperatures and need for 
seeds to experience cold temperatures – the presence of a low 
threshold to pollen-lethal temperatures would not seem to 
directly modify a species’ need for cold temperatures for seed 
stratification. Thus, multiplying the scores for these two traits 
would be inappropriate. 

Multiplicative rules are appropriate for three cases: (i) scored 
aspects represent independent probabilities, in which case the 
product reflects the probability of all aspects occurring (e.g., 
probability of too-high temperatures and too-low temperatures); 
(ii) a probability times an outcome, in which case the product 
reflects expected utility (Arponen, 2012); e.g., one minus the 
probability of too-high temperatures times seed set yields the 
mean expected number of seeds); and (iii) as in situation (i) 
or (ii) but where the values reflect indices of probabilities or 
outcomes (Arponen, 2012), in which case the product is an 
index of probabilities or expected utility. Unlike additive rules, 
multiplicative rules do not retain symmetry around a “neutral” 
score. Likewise, if zero and/or negative values are part of a 
scoring system, multiplicative rules could have unintended 
effects (e.g., multiplying by 0 reduces the influence of all other 
traits to 0, and multiplying a negative score connoting harm 
by a positive score connoting benefit produces a negative score 
suggesting overall harm – and multiplying an even number of 
negative scores produces a positive score). Hence, we suggest 
careful use of multiplicative combining rules.

Other scoring systems (especially rule-based systems) can 
reflect more nuanced interactions between traits. For example, 
a “trumping” rule is appropriate when the state of a particular 
trait makes other traits irrelevant (e.g., inundation of habitat by 
sea level rise makes large amounts of standing genetic diversity 
irrelevant). “Maximum” and “minimum” rules, which take 
the maximum or minimum value across traits, are an extreme 
version of a trumping rule because they assume that any one 
trait can override the effect of all others. In some cases, series 
of contingencies can trump one another (e.g., failed pollination 
obviates dispersal of propagules, and lack of animals to serve 
as dispersal vectors obviates the presence of available habitat 
nearby). In these cases, a hierarchical series of trumping rules 
may be necessary to reflect ecological contingencies (e.g., Smith 
et al., 2016). Midway between “trumping” and arithmetic 
rules is weighting of scores to reflect different magnitudes 
of importance to climate vulnerability. For example, the 
Standardised Index for Vulnerability and Value Assessment 
(SIIVA) allows users to weight each criterion by its expected 
importance prior to combination of scores (Reece & Noss, 
2014). After weighting the summation, multiplication or other 
rules can be applied.

We encourage users to carefully consider the effects of their 
combining rules when designing their CCVA and to convey 
justification for the particular combining rule system they use.

5.1.5.5 Missing data, uncertainty, variability, 
and inapplicability
Nearly all trait-based assessments will suffer from the problem 
of missing data, uncertainty about trait states and scoring, 
and trait variation within species. In this context “missing 
data” refers to situations where a trait could be assessed if its 
state were known, “uncertainty” refers to lack of confidence 
about the assessment of a state of a trait (e.g., should the trait 
be assigned a value of 1, 2, or 3?), and “variability” refers to 
intraspecific variation across a species in a trait related to 
climate vulnerability. While conceptually related, each of these 
situations requires importantly nuanced procedures to handle. 

5. Using CCVAs and interpreting their results

Left: Conservation practitioners and land use planners held a workshop to assess climate change vulnerability of biodiversity in western 
Tanzania. © Wendy Foden. Right: Concerns include Katavi National Park's hippos which begin to congregate in the last remaining pools in 
June. By the end of the dry season (October), several thousand are confined there, causing stress and mortality. The rivers supplying the park 
vary greatly in flow between seasons, but the bottleneck is exacerbated by recent increases in cultivation upstream from the park as well as by 
reported warming temperatures and more erratic rainfall. © Miho Saito
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Missing data can be imputed (e.g., Schrodt et al., 2015) or 
replaced with targeted research. Nonetheless, there will remain 
situations in which trait states cannot be assigned. In this case, 
one option is to assign a particular score to missing values (e.g., 
a “no effect” score; Young et al., 2015). However, this implicitly 
makes an assumption about the strategy by which uncertainty 
is managed by the users of the CCVA. For example, assigning 
a “no effect” score for missing cases will tend to down-weight 
the final scores of species for which little is known (Anacker et 
al., 2013). In turn, this can have profound effects on the overall 
assessment of vulnerability across species (e.g., Platts et al., 
2014). Another approach is to calculate overall vulnerability 
multiple times assuming different scores for missing data each 
time (e.g., reflecting benefit, no effect, or harm from climate 
change; Smith et al., 2016) and report the results as a range. 
A third option is to standardise scores within a module by, 
for example, dividing by the maximum possible score for 
each species; Reece & Noss, 2014). In this way missing scores 
become non-influential on the final outcome.

Missing data is just one aspect that contributes to uncertainty; 
other causes of uncertainty include lack of confidence about the 
state of a trait (versus complete lack of knowledge), difficulty in 
determining thresholds (i.e., assigning the appropriate score to 
a trait state), and conflicting accounts of trait states, amongst 
other causes. Again, several approaches have been used to 
address uncertainty, including independent assessment by 
multiple experts (i.e., a Delphi-like system; Runge et al., 2011) 
or assigning a range of scores. The CCVA can then be analysed 
multiple times using, for example, “optimistic” or “pessimistic” 
values of scores (e.g., Foden et al., 2013) or using Monte Carlo 
randomization (Reece & Noss, 2014). Another alternative 
is to design a separate “information availability” module 
which reflects completeness of knowledge about each species 
(Benscoter et al., 2013). Regardless, in most cases uncertainty 
should be reflected in the vulnerability assessment as a separate 
aspect (e.g., as a separate score – e.g., Moyle et al., 2013) – 
or as error bars – e.g., Benscoter et al., 2013 – or as distinct 

optimistic or pessimistic “scenarios” – e.g., Foden et al., 2013; 
Smith et al., 2016. Some trait-based assessments weight final 
scores by uncertainty by, for example, assuming species with 
more uncertainty around their scoring are inherently of lower 
priority (e.g., Thomas et al., 2011; Shoo et al., 2013), which 
in this case is directly contradictory to the precautionary 
principle. Hence, we advise reporting uncertainty separately 
from “mean” (expected) vulnerability.

Variability in traits within species is similar to –yet importantly 
distinct from– uncertainty about traits (cf. Lehmann & Rillig, 
2014a). Intraspecific variation is probably the rule rather than 
exception, yet trait-based (and other) approaches often assume 
that species act as homogenous units in response to climate 
change. Indeed, intraspecific variation can confer greater 
vulnerability to climatic variation if it reflects local adaptation 
(e.g., Valladares et al., 2014) or less vulnerability if it reflects 
ability to adapt genetically or through phenotypic plasticity 
(Avolio & Smith, 2013). Regardless, assigning a single score to 
an intraspecifically-varying trait ignores this important aspect 
of vulnerability. In this case the most appropriate practice 
would be to assign a range of values and calculate overall 
vulnerability multiple times to reflect intraspecific variation in 
traits. Alternatively, “variation in trait” can be treated as a trait 
itself to indicate increased/decreased vulnerability as a result of 
variation in the given trait.

In a related vein, some traits may be inapplicable for some 
species but applicable to others, a situation likely to arise when 
large suites of taxonomically diverse species are evaluated (e.g., 
Foden et al., 2013). For example, stream discharge rate is highly 
relevant to lotic fish but not to most birds. One option is to 
design separate CCVAs for each suite of species (e.g., Foden et 
al., 2013 evaluated corals, birds, and amphibians separately), 
but in some situations comparing vulnerability of disparate 
suites of species (e.g., in the same management unit) is desirable. 
In this context some of the methods used to handle missing 
data can be used (especially standardization). When there is 

Leatherback Turtles (Dermochelys coriacea), already a critically endangered species, are being impacted by rising beach sand temperatures. 
At higher temperatures their buried eggs hatch a disproportionately high proportion of female turtles, leading to populations with strongly 
skewed sex ratios. Their nests and nesting habitat are also threatened by rising sea levels and increases in storm activity. Left: © Roderic Mast 
/ Oceanic Society. Right: © Brian Hutchinson
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little overlap between species’ traits used for scoring, then the 
assessment of different suites of species might approach the 
situation in which they are effectively scored separately. In this 
case the inclusion of a neutral score in the scoring system can 
still serve as a benchmark against which to compare different 
groups of species since it serves as a common measure of “no 
harm” even if comparison of non-zero scores across disparate 
groups is somewhat ambiguous.

5.1.6 Accounting for habitat availability

Any non-climate factor that restricts the climate space occupied 
by a species may influence our ability to evaluate effects of 
climate change. Species’ vulnerability to climate change will, 
of course, be influenced by the availability of suitable habitat, 
both now and in the future. In particular, a species may not be 
realizing parts of its present potential climatically-determined 
range because all suitable habitat has been destroyed in some 
areas; models fitted to the realized range (which is smaller 
than the potential range) are then likely not to predict full 
occupation of the climatically suitable area now or in the 
future. Conversely, large parts of a species’ potential future 
climatically-determined range may lack suitable habitat; if 
this is not taken into account then the species’ vulnerability 
to climate change may be underestimated. Under limited 
circumstances, statistical methods can help to describe 
relationships between species’ occurrence and climate whilst 
accounting for such spatial bias (Beale 2014; an alternative 
approach is to attempt to model the impacts of such non-
climatic variables directly. Although climate is widely regarded 
as the main determinant of occurrence at large spatial scales 
(Thuiller et al., 2004; Huntley et al., 2007), at finer spatial 
scales, the inclusion of additional non-climatic variables such 
as land-cover or information about species interactions may 
improve model performance (e.g., (Araújo & Luoto, 2007; 
Luoto et al., 2007)). When modelling species’ abundance, the 
inclusion of non-climatic variables may be even more important 
(e.g., Renwick et al., 2012). However, even though models of 
species abundance at individual sites may have low explanatory 
power at the site level, predictions from the model may account 
for large-scale population changes when summarized at larger 
spatial scales (Johnston et al., 2013). 

Whilst it may be desirable to incorporate measures of non-
climatic variables in models of climate suitability, particularly 
when considering fine spatial resolutions or modelling 
abundance, attempts to construct and use models that 
incorporate habitat availability or suitability alongside climatic 
suitability face two serious problems. Firstly, if habitat variables 
(e.g., land-cover types, topographic variables) are combined 
with climatic variables in a single model, correlations between 
the habitat and climatic variables will influence the precise 
form of the relationships with climate variables. Although 
it may be argued at one level that such models may better 
describe the relationship with climate because they account for 
other potential drivers of species occurrence which may also 

(spuriously) be correlated with climate, it is equally plausible 
that at least some of these correlations will break down under 
climate change (e.g., vegetation structure at a locality may 
change as climate changes). As a result, projections for future 
climatic conditions made using such models may be inaccurate. 
Of course, if some of the distribution of a particular land-cover 
or other non-climatic variable is a least partly climatically 
related, it could be argued that allocating some of that variation 
to land-cover rather than climate would provide a conservative 
assessment of the likely impacts of climate change on a species.

Secondly, land-cover projections for the future are much more 
problematic than climate change projections. Nonetheless, 
preparation of the Representative Concentration Pathways 
developed for the IPCC 5th Assessment Report included 
production in a consistent way of half-degree gridded data 
on past, present and projected future land-use (Hurtt et al., 
2011). These data are now in principle available for use in 
making more realistic CCVAs that incorporate likely future 
changes in land-use and how these will impact species’ ability 
to realize their future potential climatically-determined ranges. 
To date, however, we are unaware of any such studies, although 
as Hannah et al., (2013) demonstrated, the potential that 
future agricultural land-use changes in response to climate 
change will lead to intensified conflicts with biodiversity 
conservation is considerable. Alternatively, projections may 
be made  from models that also incorporate land-cover, but 
without including any element of projected changes in land-
cover, or in other non-climatic variables (e.g., Renwick et al., 
2012). In this instance,  although such projections may be 
unlikely to be realized, as some degree of land-cover change is 
likely due to direct human influence, such projections may be 
best regarded as indicating how the suitability of existing land-
cover for a species is likely to change in response to climate 
change (Pearce-Higgins & Green, 2014). Such models may 
then be used to address other questions, such as considering 
an optimum land-cover in order to reduce the negative impacts 
of climate change, or to explore potential interactions between 
climate and different scenarios of land-cover change (e.g., Vos 
et al., 2008; Barbet-Massin et al., 2012). 

For the present, it is likely that other problems faced by species 
as they attempt to adjust to climate change, especially the 
impermeability of many landscapes to dispersal due to land 
use change, will be more important over coming decades 
than longer-term problems resulting from changes in land 
use in response to climatic and economic changes. The simple 
observation that climate changes seem to be outpacing the 
capacity of species and ecosystems to respond (Devictor et 
al., 2008) is an even more pressing problem, although one 
that likely is exacerbated by the extent of habitat loss and 
fragmentation as a result of human land use in many regions of 
the globe. Incorporation into CCVAs of assessments of realistic 
rates of dispersal by species to newly climatically suitable areas 
is at least as urgent and important as efforts to incorporate 
potential changes in land use. 

5. Using CCVAs and interpreting their results
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5.2	 Challenges to applying current CCVA 
approaches

5.2.1 Direct versus indirect impacts of 
climate change

A primary focus of many CCVA studies is to examine the 
direct impacts of changes in climate on focal species. To 
date, however, far less attention has been given to the indirect 
impacts of human and ecosystem responses to climate change, 
including both the new and interacting threats and stressors 
they introduce to species. We describe these effects as ‘indirect 
impacts’ of climate change and here distinguish two types. 

Indirect impacts from humans result from efforts both to 
mitigate and adapt to climate change (Paterson et al., 2008; 
Turner et al., 2010; Maxwell et al., 2015). Human mitigation 
responses are typically proactive actions taken to reduce 
greenhouse gas emissions, and include REDD+, forest 
restoration and increases in renewable energy (e.g., biofuels). 
Adaptation responses may be proactive, including actions such 
as construction of sea defences to protect coastal areas from 
rising sea-levels and increased storminess, construction of 
hydro-electric, wind and solar infrastructure for low emissions 
power generation, and increasing extraction of water to irrigate 
crops and augment drinking water supplies. Some responses 
may be reactive alone, or both reactive and proactive; these 
include human migration, shifting land use, increased reliance 
on wild species (e.g., Hazzah et al., 2013), and human-wildlife 
conflicts for water resources (Ogutu et al., 2009).

Indirect impacts may also arise from climate change-driven 
disruptions in natural systems, including in interspecies 
interactions (e.g., in mutualist, host-parasite, predator-prey 
or competitive relationships), and in habitats and ecosystems 
(e.g., declines in habitat quality or suitability; changes in 
ecosystem type, such as elevated CO2-driven woody plant 
encroachment into savannas and grasslands (Midgley & Bond, 
2015)). Such indirect impacts should not be confused, however, 
with the indirect mechanisms that mediate many of the direct 
impacts of climate change on species (Ockendon et al., 2014). 
As the palaeoecological record amply documents (Blois et al., 
2013), climatic conditions frequently modulate the outcome of 
competitive (e.g., Woodward, 1975; Woodward & Pigott, 1975) 
and other biotic interactions (e.g., Spiller & Schoener, 2008).

The roles that these indirect impacts play in exacerbating 
existing biodiversity threats and stressors are often ignored. The 
global species extinction rate currently exceeds the background 
rate by at least an order of magnitude (Woodruff, 2001; 
Barnosky et al., 2011) and probably by ~1,000 times (Pimm 
et al., 2014). An estimated 26%, 14% and 41% of mammals, 
birds and amphibians respectively are listed as threatened 
on the IUCN Red List (IUCN, 2015), predominantly due 
to threats that are historically unrelated to climate change. 
Mammals, for example, were found to have at least 40% of 

species affected by habitat loss and degradation, and 17% of 
those affected by hunting or harvesting (Schipper et al., 2008); 
other stressors driving species endangerment include over-
exploitation, invasive species, spread of disease and changes in 
fire regimes. The relative importance of different stressors varies 
both geographically and across taxonomic groups (Ceballos & 
Ehrlich, 2002; Ehrlich & Pringle, 2008), as, correspondingly, 
do their potentially magnifying effects on climate change 
impacts.

Including indirect climate change impacts on species is clearly 
an important priority for CCVAs. Mechanistic and trait-
based approaches typically consider changes in inter-species 
interactions, while assumptions about changing habitat 
quality are implicit in most approaches. Studies assessing 
human-mediated indirect impacts are beginning to emerge, 
and Maxwell et al. (2015) discuss approaches for integrating 
these into species- and site-based CCVAs. Segan et al. (2015) 
combined a correlative CCVA approach with data on the 
projected impact of climate change on human populations 
in Southern Africa (as assessed by Midgley et al., 2011), and 
found that one-fifth of threatened bird species and one-tenth of 
Important Bird Areas previously thought to be at relatively low 
vulnerability to climate change shifted to high vulnerability 
when the likely indirect impacts of climate change were 
considered. Some trait-based approaches (e.g., Young et al., 
2012) allow for consideration of indirect human impacts on 
species, and some combined approaches (e.g., Thomas et al., 
2011) include assessment of the severity of non-climatic threats. 
However data on potential and realized indirect climate change 
impacts are currently scarce.

Trait-based, mechanistic and combination approaches all have 
good potential to include indirect climate change impacts, but 
at present, practical methods to include them into CCVAs 
are generally poorly developed. Method development and the 
compilation of datasets describing indirect impacts presets 
important CCVA development priorities. At present, we 
recommend that users recognize the potential for such indirect 
effects to greatly affect climate change vulnerability, and to 
take this into account when carrying out and interpreting 
CCVA assessments. 

5.2.2 Interpreting spatially explicit model 
outputs

5.2.2.1 Inferring range changes from model projections
The output of most correlative approaches measures the 
‘suitability’ of grid cells, or the ‘probability of occurrence’ of 
a species in each grid cell. In order to transform these outputs 
into qualitative projections of the species’ potential future 
presence or absence, and hence obtain estimates of potential 
changes in the species’ range, it is necessary to apply some 
threshold value of suitability or probability of occurrence, 
above which the species is considered likely to be present and 
below which it is considered likely to be absent. Even some 
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The Quiver Tree (Aloe dichotoma) of southern Africa, although adapted to its Namib desert environment, is experiencing a poleward 
(southward) range shift, probably due to increasing temperatures and drought severity. While northern populations are declining to 
extinction, southern range expansion is limited, leading to a contraction in the species’ range. Lower right: Wendy Foden measures a Quiver 
Tree to determine the age structure and extent of mortality in its local population. All photos © Wendy B. Foden
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of the earliest applications of correlative models recognized 
the need to optimize this threshold value (see e.g., Huntley 
et al., 1995) rather than to use an arbitrary value (e.g., 0.5 as 
is conventional in logistic regression). The most widely used 
approach is to select that threshold value that optimizes 
some measure of goodness-of-fit of the correlative model, the 
problem being that a large number of such measures have been 
proposed and used. Liu et al., (2005, 2013) have explored the 
performance of alternative measures for determining threshold 
values, both for models fitted to presence–absence data (Liu et 
al., 2005) and for models fitted to presence-only data (Liu et 
al., 2013). They conclude in both cases that the threshold value 
that maximizes the sum of sensitivity and specificity is the only 
threshold among those they analysed that will have the same 
value regardless of whether it is calculated using true absences 
or randomly selected background sites (and also assuming that 
presences are randomly sampled from the species’ range). This 
measure is equivalent to one plus the value of the True Skill 
Statistic (Allouche et al., 2006); maximizing the latter thus 
gives identical optimal threshold values to maximizing the sum 
of specificity and sensitivity as proposed by Liu et al. (2005, 
2013). Hence, if thresholding is to be performed using a single 
measure, we recommend that the optimal threshold be selected 
as that which maximizes the value of the True Skill Statistic. 
However, as different threshold rules can yield dramatically 
different conclusions about whether a species will decline or 
expand under climate change (Nenzén & Araújo, 2011), we 
recommend carefully experimenting with alternative threshold 
rules with consideration as to whether optimistic or pessimistic 
outcomes are more appropriate for the analysis. Furthermore, 
thresholding will often obscure important differences in 
environmental suitability between sites – i.e., a site that is 
moderately suitable and just above the threshold cannot be 
distinguished from a site that is highly suitable and far above 
the threshold (Guillera-Arroita et al., 2015). An alternative 
to thresholding, therefore, is to retain the raw predicted 
(unthresholded) values of suitability to use in assessing whether 
environmental conditions improve or degrade for the species 
(e.g., Still et al., 2015). Furthermore, such assessments of 
change in overall suitability are a valuable complement to, 
rather than an alternative to, the use of thresholds to assess 
potential changes in range extent or degree of range overlap.

5.2.2.2 Inferring population changes from range changes
Population changes are unlikely to be linearly related to 
changes in distribution extent because individuals will rarely be 
evenly spread throughout a species’ overall area of distribution. 
Nonetheless, in the absence of more specific information, 
this is an allowable assumption (IUCN SSC Standards and 
Petitions Subcommittee, 2016), although it should be explicitly 
stated. Loucks et al., (2010), for example, made such an 

assumption when projecting the impacts of future sea-level rise 
on the population of Panthera tigris (Tiger) in the Sundarbans 
mangroves. An essential step, however, if such an assumption 
has to be made, is also to consider firstly whether habitat 
patches are large enough to support viable subpopulations, 
given demographic stochasticity and Alee effects, and secondly 
whether patches projected to be newly available in the future are 
likely to be colonized by individuals from currently occupied 
patches (IUCN SSC Standards and Petitions Subcommittee, 
2016). Such considerations will be species-specific and thus 
should be made separately for each taxon for which a CCVA 
is being performed.

Where species’ abundance, or even data recording an 
appropriate proxy for abundance, are available, then an 
alternative approach is to model the relationship between 
species abundance, as opposed to occurrence, and appropriate 
bioclimatic variables. Such models can then be used to 
project the species’ potential future abundance pattern and 
also to make an assessment of the likely overall change in its 
population size (see. e.g., Huntley et al., 2012; Renwick et al., 
2012; Johnston et al., 2013). The results presented by Huntley 
et al., (2012) indicated that populations of birds in the area 
they examined (southern Africa) were projected to decrease 
by an average of ~50%, whereas range extent was projected to 
decrease on average by only ~30%. When aggregated, predicted 
changes in the abundance of seabird and wintering water bird 
populations on protected areas in response to climate change 
were significantly correlated with observed national population 
changes (Johnston et al., 2013), supporting the validity of 
this approach. Where possible, modelling abundance, rather 
than occurrence, provides metrics that can be more easily 
applied to qualifying thresholds for site designation, for red-
listing (e.g., Johnston et al., 2013), or to modelling extinction 
risk. Even where species’ abundance data are not available, 
most correlative models output a measure of ‘suitability’ or 
‘probability of occurrence’ of a species for each grid square. 
Comparing such values for a projected future climate scenario 
with those simulated for ‘present’ climate can provide evidence 
of any likely change in the species’ population over and above 
that implied by any change in overall range extent. A decrease 
in mean suitability, for example, would indicate that the 
species’ population is likely to decrease more than is implied by 
the decrease in range extent.

Alternative approaches to assessing extinction risks on the 
basis of correlative model results have also been developed (see 
e.g., Thomas et al., 2004), but these are not species-specific, 
giving instead overall estimates of the proportion of species at 
increased risk of extinction.
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The results of all CCVAs will be subject to uncertainty as a 
result of the uncertainties associated with all of the data and 
methods used to perform the assessments. Some sources of 
uncertainty are obvious (e.g., uncertainty in future climate 
scenarios because of alternative emissions paths that may be 
followed), whereas others are often not even acknowledged 
and are rarely quantified systematically (e.g., uncertainty 
in the historical baseline climatic data). Generally, methods 
used to perform CCVAs do not take most of these sources of 
uncertainty into account. How then should CCVA developers 
and users deal with this uncertainty? Here we outline some of 
its main sources, as well as recommendations for incorporating 
and interpreting uncertainty in CCVA.

6.1	 Uncertainty from species’ distribution 
and abundance data

Uncertainties in species’ distribution data generally fall into 
two broad categories: false presences and false absences. False 
presences (commission errors) are relatively uncommon in point 

locality or gridded data, where they will arise principally either 
from species misidentification, uncertain taxonomic status, 
incorrect recording of the locality or a data entry error. On the 
other hand, where only species’ range polygons are available, 
any transformation of these to give gridded data that can be 
used for modelling is likely to generate a varying proportion of 
false presences depending upon how continuously the species 
is distributed within its overall range, and also the extent to 
which the mapped range has taken into account background 
knowledge of, for example, regional topography and the species’ 
recorded upper and/or lower altitudinal limits.

False absences (omission errors) arise principally in the context 
of gridded data where some grid cells may have been much less 
frequently visited and/or less intensively surveyed by those 
collecting the distribution data; some grid cells may never 
have been visited and so have no species recorded (MacKenzie, 
2006). Even where a grid cell has been visited and recorded 
relatively intensively, the varying detectability of different 
species will result in varying degrees of false absences; the 
most cryptic species, having lowest detection probabilities, will 
always have a higher number of false absences than the obvious 
and readily detectable species. In many cases there will also 
be systematic geographical biases in the distribution of false 
absences, resulting from systematically lower/higher recording 
efforts in some regions; often these biases will relate to the 
distances of grid cells from centres of human population and/
or to regional differences in the intensity of ‘citizen science’ 
contributions to mapping schemes.

In many cases it is difficult to make any allowance or to correct 
for these uncertainties, and it is therefore important that those 
performing CCVAs are aware of these potential limitations 
of the data that they are using. Although some datasets (e.g., 
Atlas Florae Europaeae (Jalas & Suominen, 1972)) provide no 
basis for assessing which grid cells are most likely to represent 
false absences, others (e.g., European Bird Census Council 
Atlas (Hagemeijer & Blair, 1997) provide an indication of 
those grid cells where each species was sought but not found 
as opposed to those which recorders did not visit or in which 
they made no effort to find the particular species. The best 
datasets (e.g., Southern African Bird Atlas Project (Harrison et 
al., 1997) provide data on the number of record cards returned 
from each grid cell, enabling detection probability, and hence 
the likelihood of false absences, to be quantified (see e.g., 
Bled et al., 2013). In the case of datasets that provide no such 
additional information, one approach to identifying, and hence 
excluding, false absences is to consider records for other species 

6. Understanding and working 
with uncertainty
Brian Huntley, Wendy B. Foden, James Pearce-Higgins and Adam Smith

As the climate of Queensland, Australia warms, the Golden 
Bowerbird (Prionodura newtoniana) is moving upslope to higher, 
cooler elevations. A 3oC temperature rise is expected to reduce the 
birds’ range from 1,564  km2 to only 37 km2, and limit them to 
two mountain tops. With a 4oC rise, their habitat will disappear 
completely. © Con Foley
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in the same taxonomic group. Grid cells from which the focal 
species has not been recorded but from which one or more 
related species has been recorded may more reliably represent 
true absences of the focal species, whereas grid cells from which 
none of the group has been recorded may be considered more 
likely to represent false absences. This approach does, however, 
suffer from limitations in the case of groups of related species 
that are mutually absent from some parts of environmental 
space because of shared physiological limitations arising from 
their common ancestry; in such cases the mutual absences 
represent true absences and it would thus be undesirable to 
exclude them.

In the case of abundance data, or data for abundance proxies 
(e.g., reporting rate), aside from qualitative uncertainties 
paralleling those for distribution data, there will also be 
uncertainty in the quantity recorded. The magnitude of this 
uncertainty will depend upon the method used to collect the 
data, and especially the length of time spent recording and/
or the number of replicate measurements made. Furthermore, 
these uncertainties often will not be spatially uniform, with 
greater recording effort in areas closer to human population 
centres and lines of communication. Where some measure of 
effort is available, however, this can provide an indication of 
uncertainty and can be used as an inverse weighting of data 
points when performing a CCVA (Stolar & Nielsen, 2015).

6.2	 Uncertainty from climate projections 
and baseline datasets

As discussed above, this component of uncertainty can best 
be addressed by performing CCVAs for a range of alternative 
future climate scenarios, that range being designed to span 
both the uncertainties amongst alternative models of the 
climate system and also those in future emissions scenarios. 
CCVAs for different future emissions scenarios should 
be considered as independent and collectively provide an 
indication of the likely range of outcomes for a species. 
CCVAs from different climate models, however, when for the 
same emissions scenario, provide an indication of the range 
of uncertainty amongst models and will often be combined 
into an ensemble mean CCVA that represents a consensus 
amongst the set of models used. As discussed above, in order to 
obtain a realistic assessment of the uncertainties arising from 
alternative future emissions paths, it is essential that a range 
of emissions scenarios spanning a realistic range of future 
emission paths is used (e.g., the IPCC RCP scenarios RCP8.5, 
RCP6, RCP4.5 and RCP2.6). Similarly, projections from at 
least three climate models are needed if the uncertainty arising 
from this source is to be assessed, with models selected so as to 
encompass the uncertainty range amongst those included by 
the IPCC (i.e., as well as models with global mean temperature 
and precipitation projections near the ensemble mean, models 
should be included that are relatively ‘warm’/‘cool’ and 
‘wet’/‘dry’).

Although datasets of baseline climatic conditions have inherent 
uncertainties associated with the interpolated values, modelling 
approaches used to perform CCVAs assume the gridded 
climatic data to be known without uncertainty. Furthermore, 
such gridded interpolated climatic datasets do not generally 
have uncertainty fields, even if uncertainties inherent in 
interpolations are in published papers (for example, Hijmans 
et al., 2005). The interpolation methods used also assume that 
the data recorded at individual weather stations are known 
without uncertainty, whereas all instruments have inherent 
measurement uncertainties, and where human observers are 
involved this will introduce a further source of uncertainty. It 
is impractical to include all of these uncertainties in a CCVA, 
despite their potential to introduce error. Understanding 
their implications is therefore particularly important when 
interpreting and using CCVA results.

6.3	 Uncertainty from choice of 
bioclimatic variables

A majority of published CCVA studies use simple climatological 
variables that, whilst giving statistically significant models, 
very often have no understood mechanistic relationship to the 
focal species’ performance and/or survival. The appropriate 
choice of bioclimatic variables has been discussed in Section 
5.1.3.4 (Bioclimatic variables). At this point it simply remains 
to emphasize that an informed choice, based upon biological 
knowledge of the species or of the wider taxonomic group to 
which it belongs, will always be better than defaulting to readily 
available meteorological variables. Guidance on appropriate 
default variables for different climatic regions was provided in 
Section 5.1.3.4 (Bioclimatic variables) for species where there 
is a complete absence of biological knowledge upon which to 
base a choice.

A male Albericus Frog (Albericus sp.) caring for eggs. Climate 
change is affecting amphibians in several ways, including warming-
caused increases in their metabolic rates, especially in the tropics. 
This leads to greater food requirements and therefore to challenges 
in meeting energetic demands for maintenance, growth, and 
reproduction. How such species will cope with the pressure to curb 
the energy spent remains unknown. © David Bickford
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Where informed choice nonetheless leaves some degree of 
uncertainty about the most appropriate bioclimatic variables, 
then a useful approach is to carry out the modelling required 
for the CCVA using two or more alternative plausible sets 
of bioclimatic variables. Measures of the goodness-of-fit and 
robustness of the alternative models may then indicate that 
one combination of bioclimatic variables is clearly superior, in 
which case the CCVA should be based upon those variables. 
Where alternative combinations of bioclimatic variables give 
models of similar performance, however, then computing a 
consensus result amongst the models fitted will be preferable. 
Such a consensus will best be computed using weighting of the 
models according to their performance (see e.g., Burnham & 
Anderson, 2002).

6.4	 Uncertainty from potentially 
incomplete evidence of species’ niches

A further source of uncertainty relates to the extent to which a 
species’ realized climatic niche under present climatic conditions 
fully represents its potentially realizable niche. Where, as is 
likely to be the case for a majority of species, a species is not 
currently fully occupying its potentially realizable climatic 
niche, the results obtained from correlative approaches, on the 
one hand, and from mechanistic approaches on the other, are 
both likely to be inaccurate, although for different reasons.

Correlative niche models fitted to species’ present ranges 
generally are likely substantially to under-estimate the 
potentially realizable niche, and hence overestimate 
vulnerability (Varela et al., 2009), because species are 
likely in future potentially to be able to extend their ranges 
into areas offering combinations of climatic conditions that 
don’t currently occur, but that become available as a result 
of future climate changes (Williams et al., 2007). Evidence 
of the importance of this issue comes from the Pleistocene 
fossil record that includes frequent occurrences of no-
analogue combinations of species associated with past climatic 
conditions for which no current analogue exists (Huntley, 
1990; Overpeck et al., 1992; Graham et al., 1996; Williams et 
al., 2001; Jackson & Williams, 2004).

In contrast, the mechanistic approach, which uses experimental 
and other direct evidence of species’ climatic tolerances, provides 
an estimate of the species’ fundamental climatic niche that will 
almost certainly be an overestimate of its potentially realizable 
niche, because interactions with other species play a large role 
in determining the areas of climatic space a species can occupy. 
Mechanistic approaches are thus likely to underestimate 
vulnerability to climate change. The same is true of niche 
modelling approaches that are based upon identifying, from 
species’ present distributions, bioclimatic limits to their 
occurrence, and then applying these independently to generate 
hyper-rectangular climatic niches (e.g., minimal rectilinear 
envelope modelling as applied by Svenning & Skov, 2004). 

Such approaches ignore a wealth of evidence that indicates that 
bioclimatic variables commonly have interacting effects when 
determining species’ ranges (Huntley, 2001), as well as the large 
volume of evidence of indirect effects of biotic interactions in 
limiting species’ realized climatic niches (e.g., Woodward, 
1975). As a result, these methods generate gross over-estimates 
of species’ potentially realizable niches, and if used in a CCVA 
would be likely very seriously to underestimate vulnerability 
to climate change.

One of the few sources of information that can be used to 
learn about a species’ potentially realizable climatic niche is 
the Pleistocene fossil record, but unfortunately this is available 
for only a minority of species, mostly mammals (e.g., Ovibos 
moschatus MacPhee et al. (2005); Saiga tatarica Campos et al. 
(2010) and higher plants, especially wind-pollinated temperate 
trees that are regionally monotypic (e.g., Fagus sylvatica and 
F. grandifolia in Europe and North America respectively), and 
even then is far from complete.

6.5	 Uncertainty from biological trait and 
demographic data

It is worth recognizing that a number of key uncertainties 
are associated with TVAs. Firstly, although increasingly 
studied, the importance of species-traits in influencing species’ 
vulnerability to climate change is relatively undescribed 
and uncertain, with different studies showing variation in 
importance (e.g., Dobrowski et al., 2011; Angert et al., 2011; 
Pearson et al., 2014b). Although an increasing evidence base is 
building around the importance of particular traits affecting 
species’ vulnerability to climate change (e.g., Pearce-Higgins et 
al., (2015) for birds; Pearson et al., (2014a) for amphibians), we 
do not yet know which are the most important, and how that 
importance may vary among species and locations (Pacifici 
et al., 2015; Willis et al., 2015) (see also sections 5.1.5.4 
Calculating overall measures of vulnerability and 5.1.5.5 
Missing data, uncertainty, variability, and inapplicability 
in this report.) Challenges to the development of a cohesive 
evidence base include accounting for the many traits and 
variables that may drive vulnerability, the interactions between 
these traits and the lack of standardization between the 
published studies on which such an evidence base would rely 
(Estrada et al., 2016).

Secondly, and related to this, there is little consensus about how 
information about different traits should be scored or combined 
to assess vulnerability, making it difficult to compare the results 
of different approaches (Willis et al., 2015), and resulting in 
there being no overall assessment of the actual magnitude of 
projected risk across species. Thirdly, the ability of experts 
to assess ecological traits also remains uncertain. Given that 
expert judgement can be subject to bias (Burgman et al., 2011), 
it is important to ensure that where it is used, a clear and valid 
methodology is applied to such expert-based assessment. 

6. Understanding and working with uncertainty
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Given the inevitable gaps in availability of biological and 
trait-based data, those performing CCVAs using trait-based 
or mechanistic methods will often have to resort to using 
best estimates for the values of missing data, for example by 
using values for close relatives where these are known. The 
use of such best estimates, however, inevitably introduces an 
additional degree of uncertainty. Even where data are available, 
they are subject to numerous other sources of uncertainty. 
Most biological and demographic characteristics, for example, 
show varying degrees of intraspecific, spatial and temporal 
variability. Such uncertainties in best estimates and variability 
in measurements should be taken into account when performing 
mechanistic or trait-based CCVAs, ideally by performing an 
ensemble of analyses using a range of plausible estimates for 
each value in order to assess the overall uncertainty in the 
CCVA result.

In many cases, the only available data have been gathered from 
laboratory experiments (e.g., physiological tolerances) or from 
ex situ individuals such as those in zoos, botanical gardens or 
breeding programmes (e.g., longevity, age at first reproduction, 
litter size); the inherent biases in data from such sources should 
be considered if they must be used. On the other hand, field-
based measurements of tolerances may confound the effects of 
phenotypic plasticity, epigenetic mechanisms and genetics, and 
thus also provide biased estimates.

It is important to distinguish uncertainty (lack of knowledge) 
from variability (natural variation in traits with species; cf. 
(Lehmann & Rillig, 2014b). The former can be rectified by 
gap-filling as mentioned above or otherwise accounted for in a 
scoring system (5.1.5.5 Missing data, uncertainty, variability, 
and inapplicability). In contrast, intraspecific variation in 
traits cannot be absolved through more research or gap-
filling – it reflects actual differences between individuals 
and populations within a species. Methods for reflecting 
intraspecific variation in traits in CCVA are discussed in 
Section 5.1.6.5 Missing data, uncertainty, variability, and 
inapplicability.

6.5.1 Changes in traits over time

Traits used for predicting climate change vulnerability (e.g., 
body size, fecundity and energy requirements) may themselves 
be subject to selection by climatic conditions and thus may 
change as climate changes (Isaac, 2009). For example, 
warming and decreases in dissolved oxygen are predicted to 
lead to decreased body sizes in marine fishes (Cheung et al., 
2012). According to Bergmann’s Rule, which proposes a global 
pattern of decreasing body size along a gradient from cooler to 
warmer regions due to the advantages of a lower surface area to 
volume ratio in cooler climates (Freckleton et al., 2003; Clauss 
et al., 2013), a trend of decreasing body size might be expected 
as climate warms. Some experimental and observational studies 
have found evidence for this (Sheridan & Bickford, 2011), 
but there are also contradictory data (Teplitsky & Millien, 

2013). Species’ capacities for such an adaptive response may 
be provided by one or both of phenotypic plasticity or genetic 
evolution across generations, and individual species’ capacities 
for such adaptive responses may be important determinants 
of their degree of climate change vulnerability. Phenological 
changes (i.e., changes in the timing of events such as flowering 
and reproduction), the underlying mechanism for which may 
again be either phenotypic plasticity or genetic evolution, seem 
to be a particularly important adaptive response in both plants 
and animals, although species and even major taxonomic 
groups show different rates and magnitudes of responses to 
the climate changes of the past century (Root et al., 2003). 
Such often under-appreciated vulnerability traits, although 
challenging to quantify, can and should be incorporated when 
applying mechanistic and trait-based approaches (Chown et 
al., 2010).

6.6 Uncertainty from choice of method

6.6.1 Correlative approaches

Uncertainties arising from the choice of modelling technique 
have received considerable attention in the literature, and 
there has been widespread advocacy of an ensemble approach 
that utilizes a range of alternative methods and takes a mean 
(often weighted) of the results obtained from these methods 
(Thuiller, 2003; Araújo & New, 2007; Marmion et al., 2009). 
Unfortunately, the issue of selecting appropriate and rejecting 
inappropriate methods to include in such ensembles has 
received much less attention. An appropriate choice is essential, 
however, because at least some methods used in published 
studies make inappropriate assumptions, firstly about the 
form of the relationships being modelled and secondly about 
the nature of the interactive effects of two or more bioclimatic 
variables on species. Including methods that make such 
inappropriate assumptions in an ensemble is likely to result in 
a less reliable consensus result, and certainly one that is less 
robust, than would be obtained from a more limited ensemble 
of models, or perhaps even just a single model, that do/does not 
make such assumptions.

Many methods assume some particular form of the relationship 
between a species’ probability of occurrence and each bioclimatic 
variable, some for example assuming a linear relationship and 
others a symmetrical Gaussian or ‘bell-shaped’ relationship, 
whereas in reality the realized relationships usually are more 
complex (Austin, 2007). Similarly, some methods assume no 
interactions between the bioclimatic variables determining a 
species’ range (e.g., minimal rectilinear envelope modelling 
as applied by Svenning & Skov (2004); once again ample 
evidence indicates that this is not a valid assumption. The 
most appropriate methods arguably are thus those that make 
no prior assumption about the form of the relationships being 
modelled and that allow for interacting effects of the bioclimatic 
variables. Ideally models should be fitted across the range of 
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the species, allowing for non-stationary interactions between 
bioclimatic variables and for complex forms of the relationships 
of species’ probability of occurrence and bioclimatic variables. 
A non-exhaustive list of preferred methods would include: 
generalized additive models (GAMs) with appropriate choice 
of smoother (e.g., smoothing splines) (Yee & Mitchell, 1991); 
climatic response surfaces fitted by locally-weighted regression 
(Huntley et al., 1995); and classification and regression trees 
(De’ath & Fabricius, 2000).

In the context of CCVA, a major source of uncertainty relates to 
the fact that most modelling techniques behave unpredictably 
when, as will almost inevitably be the case, predictions of 
species’ potential future ranges require extrapolations into areas 
of climatic space (i.e., combinations of bioclimatic variable 
values) that are projected to be available in the future but that 
are not currently found anywhere within the domain of the data 
used to fit the model. For this reason wise precautions include 
mapping areas that are projected to have future climates without 
current analogues, using appropriate tools to characterize such 
novelty in future climates, and/or using methods that enable 
predictions made by extrapolation to be identified (Platts et 
al., 2008; Fitzpatrick & Hargrove, 2009; Elith et al., 2010; 
Zurell et al., 2012). Combining such precautions with the 
use of methods that behave in a conservative and predictable 
manner when extrapolated (e.g., climatic response surfaces 
fitted by locally-weighted regression that make predictions 
beyond the scope of the fitting domain that are asymptotic 

to the values at the margins of that domain, (Huntley et al., 
2007)) avoids the pitfalls associated with methods that are 
prone to give unrealistic predictions outside the fitting domain 
(e.g., generalized linear models using polynomial relationships 
may give response curves for individual variables that predict 
increase, decrease or no change in environmental suitability in 
regions beyond the range of the training data, any or all of 
which may be realistic or completely unrealistic).

Another important source of uncertainty is bias in the presence 
records or presence cells used to train the correlative model. At 
global scales collection effort is concentrated around areas of 
high endemism, close to research institutions, and in wealthier 
countries (Meyer et al., 2015), while at finer scales collection 
effort is often concentrated along areas of access (roads, rivers) 
and close to major population centres (Phillips et al., 2009). As 
discussed in Section 5.1.4 Species distribution data, methods 
exist to remove these biases. Nonetheless, differentiating 
sampling bias from genuine differences in density of the species 
across its range can be difficult and thus introduce uncertainty.

An additional source of uncertainty arises in the case of 
methods that use presence-only data, as opposed to presence–
absence data, because most of these methods do not use only 
the presences but must also use pseudo-absences or background 
sites in order to fit a model (Elith et al., 2006), and all require 
pseudo-absences or background sites in order to evaluate 
conventional measures of model goodness-of-fit that are based 
upon the four values in the confusion matrix (Figure 10). 
Pseudo-absences are sites selected in a manner that attempts to 
ensure that the species is absent from a location (even though 
there may have been no search effort in that location for 
the species). Pseudo-absences are used to stand in for “true” 
absences. In contrast, background sites can be located across 
a landscape regardless of whether a species is present or absent 
from a particular site. Some algorithms can use either pseudo-
absences or background sites (e.g., generalized additive models 
and linear models), while other methods should only be used 
with background sites (e.g., Maxent; Merow et al., 2013). How 
these pseudo-absences or background sites are selected varies, 
with different selection methods resulting in models that differ 
in performance and in the robustness of their predictions 
(Phillips et al., 2009). In many cases the overall extent of the 
climatic space defined for fitting determines the space within 
which pseudo-absences or background sites are selected, but 
the larger the climatic space that is defined, the less well the 
species’ ‘true’ climatic envelope is constrained, often resulting 

Narwhals (Monodon monoceros) have been ranked by an expert panel 
as one of the most climate change sensitive species in the Arctic 
because of their limited distribution, specialized diet and high 
dependence on sea ice environments. © Magnus Andersen, NPI

Model predictions
Observations

Presence Absence

Presence a b

Absence c d

Figure 10. Confusion matrix.

6. Understanding and working with uncertainty
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in model predictions of much more extensive ranges than are in 
reality observed. A similar tendency to predict more extensive 
ranges than are observed has been reported for the widely 
used MAXENT method by Royle et al. (2012) who present 
an alternative likelihood-based method, MAXLIKE, that does 
not suffer from the same problem.

Values a–d are used to calculate measures of goodness-of-
fit, e.g., sensitivity (Se) or proportion of presences correctly 
predicted, specificity (Sp) or proportion of absences correctly 
predicted, or the true skill statistic (TSS):

Se = a / (a + c)

Sp = d / (b + d)

6.6.2 Trait-based approaches

Uncertainty in trait-based assessments is introduced at many 
stages, including: the traits selected to infer vulnerability; 
the thresholds chosen to quantify each species’ associated 
vulnerability; the weighting systems that may or may not be 
used to give priority to certain traits or scores; and through 
the system used to combine the trait scores into the overall 
vulnerability scores, ranks or categories. We discuss ways in 
which these uncertainties may be quantified and accounted for 
in Sections 5.1.5 (Selecting and using species trait data) and 6.5 
(Uncertainty from biological trait and demographic data). We 
note that traits are likely to interact with each other and with 
climatic and other changes in non-linear and context-specific 
ways. To be able to take this into account, any CCVA approach 
needs to be based on detailed field studies which, to date, are 
few. Further such studies, as well as the development of more 
mechanistic models (e.g., Keith et al., 2008; Morin et al., 2008) 
should start to address this uncertainty (Foden et al., 2013). 

6.7 CCVA validation

Assessing the reliability of CCVAs is important both for 
understanding their uncertainties and for improving their 
performance in future applications. To date, validation 
appears only to have been performed for correlative methods 
using species’ distribution models, although the approaches 
to validation applied to such CCVAs have potential to be 
applied also to other methods. The basic underlying principle 
of most of these validation approaches is to fit a model to 
only some fraction of the available observations and use this 
model to predict observations that were not used in fitting the 
model. At least three distinct variants of this approach can be 
recognized, however.

The most commonly applied approach uses observations from 
only one discrete region and time interval, fitting models 
repeatedly to randomly-selected subsets (e.g., 70%) of those 
observations and using each model to predict the observations 
excluded when it was fitted, model performance being assessed 
in terms of the success with which excluded observations are 
predicted (e.g., Pearson et al., 2007; Hole et al., 2009; Araújo 
et al., 2011; Garcia et al., 2012). Ideally, models are fitted to a 
large number (e.g., 100, Hole et al., 2009) of random subsets, 
although often the number used is smaller (e.g., 10, Araújo et al., 
2011) and some authors appear only to have made one random 
split of their data (although this is now becoming much less 
common). This is potentially dangerous as one random split 
may by chance either over or uderestimate model performance. 
Each model’s predictive power is assessed using one or more 
goodness-of-fit measures (e.g., area under the receiver operating 
characteristic curve (AUC, Metz 1978); Cohen’s kappa (K, 
Cohen, 1960); true skill statistic (TSS, Allouche et al., 2006); 
fitting multiple models allows both the central tendency and 
dispersion of the values for measures of goodness-of-fit to be 
assessed, the latter providing an indication of the uncertainty 
arising from selection of the observations used for model 
fitting. Such a cross-validation approach helps avoid over-
fitted models because models giving high goodness-of-fit 
when fitted to all available observations are often not robust 
when cross-validation is performed. Models that perform well 
in cross-validation should be preferred and are likely to give 
more reliable predictions when predicting into a climatically 
changed future.

An alternative but relatively rarely used approach is to use 
observations from one geographical region to fit a model and 
then use the model to predict the species’ distribution in a 
different geographical region (e.g., Beerling, David J., Huntley, 
Brian & Bailey, 1995). This approach makes the assumption that 
the species has been able to realize essentially the same climatic 
niche in both regions, something that will not necessarily be 
the case if the regions occupied differ substantially in the range 
of climatic conditions that they offer. The example cited used 
an introduced species, requiring the additional assumption 
that the species had fully occupied its potential realizable niche 
in the region to which it had been introduced. A variation on 
this approach fits a model to the known observed range of a 
species and then either tests the ability of that model to predict 
as yet unrecorded localities for the species (e.g., Busby, 1991), 
or else tests the ability of the model to predict suitable but as 
yet unoccupied localities by making deliberate introductions to 
such localities and assessing whether or not the species is able to 
establish a population and thrive at those localities (e.g., Willis 
et al., 2009).

A more widely applied approach fits a model to observations 
from one time period and uses that model to hindcast (e.g., 
Hill et al., 1999) or forecast (e.g., Araújo et al., 2005; Morelli 
et al., 2012; Bled et al., 2013; Watling et al., 2013) the 
species’ distribution at some earlier or later time. The model’s 

TSS =
a

a + c + – 1( ) d
b + d( )
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predictions for the period from which data were not used in 
fitting the model are then assessed using observations from that 
time, either qualitatively in terms of broad visual comparison, 
where systematic comparison is not possible or inappropriate, 
or as before using appropriate measures of goodness-of-fit. In 
principle, this approach can be extended to use models fitted 
to species’ present distributions to make hindcasts of their 
potential distributions for periods in the late Quaternary that 
are then compared with the available fossil record for the species; 
however, the general scarcity of fossil remains identifiable to the 
species level severely limits the application of such an approach. 
Nonetheless, such hindcasts can provide valuable insights into 
species’ potential past ranges that can aid our understanding of 
present distributions and behaviour (e.g., Ruegg et al., 2006; 
Huntley et al., 2014).

An alternative validation approach involves fitting a model 
to presence–absence observations from one time period and 
using it to forecast/hindcast changes not in species’ presence 
or absence, but in the raw climatic suitability values output by 
the model. The predicted changes in climatic suitability can 

then be compared with observed changes in population size 
of the species (e.g., Green et al., 2008; Gregory et al., 2009). 
Such an approach provides robust and convincing validation of 
the correlative modelling approach, but is only possible in areas 

Lasius balearicus. © Gerard Talavera

Only described as a new species in 2014, Lasius balearicus, is an ant species restricted to the highest summits (800 m to 1,400 m above 
sea level) of the Serra de Tramuntana mountains of Majorca, Spain. The species is considered to be in danger of extinction due both to 
its extremely small range and because correlative models predict climate change driven declines in range suitability such that it may soon 
become extinct. © Roger Vila
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and for species with good, typically long-term, monitoring 
datasets (e.g., rare birds breeding in the UK, Green et al., 
2008; European breeding birds, Gregory et al., 2009). A related 
approach compares raw predicted values to measures like body 
size, fecundity, or other metrics of population-level fitness (e.g., 
Wittmann et al., 2016).

Evidence of the general robustness of the expectation that 
species’ geographical ranges track changes in climate (Huntley 
& Webb, 1989) can be provided by studies showing such 
responses over the past century (e.g., Tingley et al., 2009; Chen 

et al., 2011). Such evidence provides further corroborative 
support for the validity of the general approach used by 
CCVA methods based upon species’ distribution models, even 
if no formal validation of a model is performed in the sense 
described above. Use of such observation-based validation is an 
important priority for those developing and using trait-based 
approaches; the observational data needs, however, limit the 
use of recently observed changes for such CCVA validation 
to areas and species with high quality long-term observation 
records.

The Joshua Tree (Yucca brevifolia) is threatened by increased temperatures and decreased rainfall in its desert habitat in the southwest of 
North America. The range of this unusual tree is predicted to contract poleward (northward) and split into isolated populations. While 
some simulations project expansion into new habitat, observed dispersal rates (both current and historical) seem to indicate the trees will be 
unable to do so. © kevinschafer.com
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The IUCN Red List is widely regarded as the most authoritative 
system for classifying species according to their vulnerability 
to extinction risk. The IUCN Red List criteria are based on 
symptoms of endangerment (Mace et al., 2008); they are 
applicable to any threatening process, including climate change, 
that results in symptoms such as population decline, small 
population sizes, and small geographic distributions. A species 
may be classified as threatened according to the IUCN Red 
List criteria even if a threatening process cannot be identified. 

This symptom-based approach is of particular value for dealing 
with climate change impacts for two main reasons. Firstly, 
climate change is a newly studied and poorly understood threat, 
so it is not always possible to identify it as the cause of a species’ 
vulnerability or endangerment (Parmesan et al., 2011). It is also 
challenging to understand the causal connections (mechanisms) 
linking climate change to biological response at the population 
or species level, and to take into account interactions with 
other impacts such as habitat loss, exploitation and diseases. A 
symptom-based system overcomes these difficulties by focusing 
on population and species-level changes, instead of trying to 
diagnose causes of declines. The second advantage is related to the 
impacts of human adaptation to climate change, such as shifts 
in agriculture and urbanization, on species. These responses are 
difficult to predict, but may be as important as direct effects of 
climate change in terms of impacts on biodiversity (Chapman 
et al., 2014; Maxwell et al., 2015; Segan et al., 2015). As the 
Red List criteria do not distinguish between symptoms (such 
as population declines or range contractions) driven by climate 
change directly or by human responses, species threatened by the 
latter would be identified equally well (Akçakaya et al., 2014). 
Although identifying causal links may be important for threat 
abatement, for the initial step of identifying species vulnerable 
to extinction (because of climate change or any other threat), a 
symptom-based approach is both efficient and accurate.

7.1	 Using CCVA results for IUCN 
	 	 Red Listing

The IUCN Standards and Petitions Subcommittee has 
developed and maintains guidelines for using the IUCN Red 
List, including in the context of climate change (IUCN SSC 
Standards and Petitions Subcommittee, 2016); see Box 5. 
Since these are extensive, widely reviewed, and already cover 
information needed for Red Listing with climate change, 
we do not duplicate this information here. We focus instead 
on outlining three types of scenarios that users may find 

themselves in, and highlight how the Red List assessment may 
be approached for each. We note that the main difficulties 
encountered by those using CCVA results when applying 
the IUCN Red List criteria involve interpreting the IUCN 
definitions and relating these to model outputs. This topic has 
been comprehensively covered in a paper entitled: “Use and 
Misuse of the IUCN Red List Criteria in Projecting Climate 
Change Impacts on Biodiversity” (Akçakaya et al., 2006).

Recent studies show that, due to its symptom-focused approach, 
the IUCN Red List criteria can identify species vulnerable to 
extinction due to climate change, even where climate change 
is not specifically considered. In a study involving North 
American reptiles and amphibians, Pearson et al. (2014) used a 
correlative-demographic model to show that extinction risk due 

7. The IUCN Red List and Climate 
Change Vulnerability
Wendy B. Foden and Resit Akçakaya

Box 5. Climate Change and the Guidelines for Using 
the IUCN Red List Categories and Criteria
http://www.iucnredlist.org/documents/RedListGuidelines.pdf 

The ‘Guidelines for Using the IUCN Red List Categories 
and Criteria’, often referred to as the IUCN Red List 
Guidelines, provide detailed guidance on specific issues 
and challenges relating to considerations of climate 
change in Red Listing. These guidelines were developed 
by the IUCN SSC Standards and Petitions Subcommittee 
and are updated approximately once per year, so 
assessors are urged to consult the latest version before 
making assessments. Section 12 presents guidance on 
threatening processes and Section 12.1 is focused on 
climate change. We outline below the topics covered in 
this section at the time of writing (Version 12 (2016)) to 
give readers an overview of what information they will find 
there. However, since the Red List Guidelines are updated 
more often than the CCVA Guidelines, we remind users, 
once again, to check the latest version online.

12.1 GLOBAL CLIMATE CHANGE
12.1.1	 Time horizons
12.1.2	 Suggested steps for applying the criteria under 

climate change
12.1.3	 Mechanisms
12.1.4	 Very restricted distribution and plausibility and 

immediacy of threat (VU D2)
12.1.5	 Definition of “Location” under climate change (B1, 

B2, D2)
12.1.6	 Severe fragmentation (B1, B2, C1 and C2)
12.1.7	 Extreme fluctuations (B1, B2, C1 and C2) 
12.1.8	 Inferring population reduction and continuing 

decline (A3, A4, B1, B2, C2) 
12.1.9	 Inferring reductions from bioclimatic models (A3, A4) 
12.1.10	Inferring reductions from demographic change
12.1.11	Estimating extinction risk quantitatively with 

coupled habitat and population models (E)
12.1.12	Using bioclimate models 

http://www.iucnredlist.org/documents/RedListGuidelines.pdf
http://www.iucnredlist.org/documents/RedListGuidelines.pdf
http://www.iucnredlist.org/documents/RedListGuidelines.pdf
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to climate change can be predicted by information available in 
the present day, such as current occupied area and population 
size, much of which is used in the IUCN Red List criteria. 
Using the same species and climate projections, Stanton et al. 
(2015) showed that IUCN Red List criteria can identify species 
that would go extinct because of climate change without 
conservation action, and can do so with decades of warning 
time. Warning time is defined as the time between when a 
species is first identified as threatened and when it goes extinct 
(assuming no conservation action), and is the time available for 
the cause of the decline to be identified and for conservation 
measures to be implemented to address the threat and prevent 
the extinction of a species. 

There has been concern that the Red List criteria may not be 
adequate for assessing species threatened with climate change, 
particularly because many species that are projected to undergo 
substantial range contractions in the next several decades have 
generation lengths that are too short to trigger the relevant 
IUCN Red List criteria, which consider declines over a three-
generation period (Akçakaya et al., 2006). Keith et al. (2014), 
however, found that warning times were sufficient for a short-
lived Australian amphibian, and Stanton et al. (2015) showed 
that shorter generation lengths did not decrease the power of 
the Red List to predict climate change-driven extinction risk.

Three important factors contribute to the Red List’s ability to 
predict climate change-driven extinction risk. The first is the 
quality and amount of information used for Red Listing; lack 
of information often results in only one criterion being used 
for assessing a species’ status, which is problematic since both 
Keith et al. (2014) and Stanton et al. (2015) show that using 
a single criterion results in shorter warning times. Stanton et 
al. (2015) show that although average warning time is over 60 
years when all criteria are used, it is as short as 20 years when 
only a single criterion is used. Secondly, regular monitoring of 

species is required if symptoms of changes in population and 
range sizes are to be detected and used (Keith et al., 2014). 
The nature or threat and the concept of ‘warning times’ means 
that it is also critical to regularly reassess species already listed 
on the Red List. This is particularly important in data-poor 
situations. Akçakaya et al. (2014) and Stanton et al. (2015) 
show, for example, that when data constraints allow use of only 
one criterion, annual or 5-year, instead of 10-year reassessment 
intervals, increase warning times substantially. Finally, 
warning time is likely to be too short if conservation action is 
started only when a species is listed at the highest IUCN threat 
category (Critically Endangered). 

 
7.2	 Three user scenarios for Red Listing 

considering Climate Change

We begin with the simplest scenario, which is oriented for a 
resource-poor context, and continue to those scenarios where 
greater resources are available. 

Scenario 1: Consider the species’ ecological and biological traits 
to determine the likely mechanisms of climate change impact and 
quantify these using expert knowledge

Climate change can affect populations via many mechanisms; 
and thinking about how this will occur for given taxa can clarify 
the parameters and criteria relevant for a Red List assessment. 
In this scenario, an assessor may not have the data or expertise 
to model climate change impacts, but does have information 
on the physiology, behaviour and ecology of the focal species. 
Assessors should consider this information to determine the 
likely mechanisms of both direct and indirect climate change 
impacts, those from climate change interactions with other 
threats (e.g., invasive species, habitat loss) and the impacts of 
human responses to climate change. 

A Coral Crisis working group meeting was held at the Royal Society, London in July 2009. Co-chaired by Sir David Attenborough, coral 
reef and climate change specialists outlined seven key points about the vulnerability of coral reefs to climate change globally. These were 
then communicated to the public and press through an emergency position statement, delivered by Sir David, and through a supporting 
publication. Left: Staghorn corals © Lyndon Devantier. Right: Coral Crisis working group meeting © Sonia Khela
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To apply the Red List criteria, assessors are required to quantify 
the impacts of these mechanisms on the species to determine 
whether they meet the thresholds for the Red List threat 
categories. To do this, we recommend that assessors rank the 
listed mechanisms according to the degree and likelihood of 
impact, and for the dominant mechanisms or threats, estimate 
their plausibility (how likely they are to impact), immediacy 
(how soon they are expected to impact), geographic scope 
(where they are likely to impact) and severity (how much they 
are likely to impact the species’ population or distribution 
range). The Red List Guidelines provide detailed guidance 
on how to carry this out, and how Red List concepts such 
as “location,” “severely fragmented,” “extreme fluctuations,” 
“population reductions,” “very restricted distribution” and 
“continuing decline” should be interpreted in this context. 
The justification of these estimates or projections should be 
specified in threats and assessment rationales. Since some of 
this information may be based on expert knowledge, as many 
experts as possible should be involved and consensus reached 
wherever possible. Note that many of the variables used in 
this process (such as location, severe fragmentation, restricted 
distribution) require spatial information, and the calculation of 
the others (in particular, reduction and estimated continuing 
decline) must consider the variability of rates of change across 
the species’ range. Therefore, detailed maps of the species’ range 
and other types of spatially explicit data need to be considered 
in this scenario.

Scenario 2: Use correlative model outputs to quantify climate 
change impacts on species’ distribution ranges

Where correlative model results are available, or where assessors 
are able to carry these out, they can provide a valuable way to 
project and quantify the direct impacts of bioclimatic changes 
on species’ distribution ranges. This is particularly valuable 
for projecting declines in distribution ranges, and can be 
used to infer changes in population sizes. The IUCN Red List 
Guidelines (Section 12.1.12 Using bioclimatic models) give 
specific guidance on how these two components should be 
derived and interpreted from the models, as well as their use in 
assigning species into threat categories. Section 4.1 of the Red 
List guidelines provides steps for assessing the robustness of the 
data and methods used in existing model outputs, and Sections 
5 and 6 provide guidance for those wishing to build their own 
bioclimatic models. An important consideration is that the 

selection of predictor variables to include in these models needs 
to be informed by the likely mechanisms of climate change 
impact, as outlined in scenario 1.

It is important to recognize that correlative models typically 
focus only on direct climatic impacts from climate change, and 
impacts from aspects such as changes in species interactions, 
disruptions to cues, climate change interaction with other 
threats and human responses to climate change, are not 
considered. The CCVA Guidelines discuss ways in which 
bioclimatic models can and have been combined with trait-
based and demographic models to consider other possible 
mechanisms of impacts; understanding of likely changes in 
interactions with other species can also be improved by carrying 
out bioclimatic modelling on key interacting species (e.g., prey 
or pollinators). To thoroughly explore the full range of potential 
climate change impacts, however, we recommend that assessors 
also carry out a full inventory of likely climate change impact 
mechanisms on the focal species (see Scenario 1), and use the 
Red List Guidelines to interpret how these can be quantified to 
contribute to the Red List assessment. 
 
Scenario 3: Use mechanistic model outputs to quantify climate 
change impacts on populations and ranges

Where mechanistic model results are available, or where 
assessors are able to build such models, they can provide a 
valuable way to project and quantify both direct and indirect 
impacts of climate change on a range of possible species 
parameters including population sizes, distribution ranges, 
interspecies interactions and overall species extinction risk. 
Because mechanistic models typically require significant data 
and expertise, they are generally constructed for fewer species. 

In most cases, their spatial component will be based on results 
of the correlative models, so this step is dependent on the 
previous one, and the relevant Red List and CCVA Guidelines 
sections should be consulted. In addition, the demographic 
model components will also need to be reviewed. Few models 
are likely to be able to include all of the direct, indirect and 
interacting effects of climate change on the focal species, so we 
also recommend that assessors carry out an impact mechanism 
inventory (described in Scenario 1) in order to identify any 
additional potentially important climate-driven threats to 
the species.

7. The IUCN Red List and Climate Change Vulnerability
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Temperature increases and changing rainfall seasonality are expected to increase fire frequency and intensity in South Africa’s Cape Floral 
Kingdom, affecting species such as the King Protea (Protea cynaroides). © Wendy B. Foden
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Effective communication of CCVA results requires thought 
and care, especially considering the controversy sometimes 
associated with climate change. Just as for the vulnerability 
assessment analyses, such communication should ensure that 
uncertainties are clearly explained, vulnerabilities explicitly 
described, and results presented in ways that facilitate their 
use in developing adaptation strategies. Here, we make 
suggestions about developing effective communication 
strategies for CCVAs and their results. Our suggestions 
include identifying and targeting specific audiences, framing 
results in an appropriate manner with pertinent content and 
useful figures, using different media and methods in the most 
effective ways possible and conveying risk and uncertainty 
clearly and concisely.

The first step is to identify the audience or audiences that you 
wish to target. Although a CCVA can often have multiple 
stakeholders, communication products should be tightly 
targeted at specific audiences, potentially necessitating multiple 
products from a single assessment. Audiences’ scientific, climate 
change and biological literacy and backgrounds should be 
considered along with the kinds of information that are most 
relevant to them. Table 11 lists examples of possible CCVA 
audiences, the information that will likely be most relevant to 
them and suggestions about appropriate methods and media 
for communicating results to each. It is important to note 
that several different media and methods are often needed 
for effective communication, even for a single audience, and 
that this is almost always the case when addressing different 
audiences. Targeting your audience also means understanding 

your audience. For this, some degree of foresight and planning is 
required to think about biases, receptiveness to potential CCVA 
results, and other factors that might compete for the audience’s 
attention or concern (e.g., socio-economic, temporal, spatial, 
political). In summary, targeting your audience necessitates 
tailoring methods, media, and content for your target group 
by understanding biases and other concerns that the audience 
might have with the results of a CCVA.

Second, authors should consider what to communicate. 
What to communicate depends on the audience but can be 
broadly categorized into a few important factors (see Gross 
et al., 2016). Among these are conservation, economic and 
social implications of climate change at the scale or intensity 
that is relevant to the audience. Other important factors to 
consider are the likelihood, reversibility, timing and potential 
for adaptation to climate change impacts and vulnerabilities. 
While many of these will be specific to a particular stakeholder 
group, the breadth of these categories should be considered for 
every audience.

In addition to describing the degree(s) of vulnerability of 
the assessed species and the implications for species-focused 
and site-focused conservation interventions, authors may 
wish to describe the methods used, data gaps encountered 
and uncertainties associated with the results. For scientists 
and researchers, the details of complicated models may be 
appropriate, while just a brief description of such models 
would form part of a briefing paper or talk to a community 
group. Information useful for designing adaptation strategies, 

8. Communicating CCVA results
David Bickford, Bruce E. Young, Jamie Carr, David Hole and Stuart Butchart

Table 11. Examples of CCVA target audiences, the types of information they require, and some of the communication media 
that are useful for communicating CCVAs and their results to them.

Audience Relevant information Appropriate communication media or methods

General public 
or multiple 
stakeholders

Broad conclusions and take-home messages about key 
vulnerabilities; basic data and analyses

Oral presentations/meetings with Q & A sessions; press 
releases targeting mass media; social media; popular articles 

Land and species 
conservation 
managers

Specific conclusions; suggestions for adaptation strategies 
for specific species, sites and site networks; in-depth data 
and analyses; areas of uncertainty; data deficiencies

Meetings; publications (both grey and peer-reviewed 
literature); guidelines documents

Policy makers, 
donor agencies

Broad conclusions; take-home messages; policy 
implications

Oral presentations/meetings with Q and A session; press 
releases and letters to the editor targeting mass media, 
policy forums; social media; briefing papers1

Scientists and 
researchers

Specific conclusions; data and analyses; methodological 
problems and limitations; suggestions for CCVA 
improvement; areas of uncertainty

International peer-reviewed scientific publications; oral 
presentations at scientific meetings; social media 

1	 In many policy arenas, a published paper in the scientific literature or a formal report is needed to support the conclusions presented in more abbreviated forms to 
policy makers.
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such as species’ physiological tolerances, life histories and/
or landscape contexts, is key to informing the development 
and implementation of these conservation actions. For 
conservation practitioners, spatially explicit results are also 
likely to be valuable for developing adaptation strategies, and 
maps depicting these results should include a spatial context 
(political boundaries, roads, park boundaries and populated 
areas) that the audience can relate to. 

A third suggestion is that authors need to think about how to 
communicate, and to make effective use of available media 
and visual aids (e.g., graphs, tables, maps and figures) for 
dissemination. Use of colour in graphics to indicate relative 
vulnerability of the species assessed and error bars to indicate the 
limits of uncertainty can be powerful means of communication 
(e.g., Dubois et al., 2011). Increasingly, project leaders are using 
short videos to describe their findings to general audiences. 
Emotional segments of wildlife and testimonials from rural 
farmers affected by climate change are techniques used to help 
these videos connect with broad audiences. Media such as 
brief reports, graphs and summary tables can quickly convey 
complexities that are hard to explain in other ways. When 
writing, authors also should pay attention to clear articulation 
of terms and avoidance of undefined acronyms or obscure 
technical jargon. A medium that is becoming increasingly 
useful for disseminating results to broad audiences is social 
media. For example, Twitter, Facebook, and Instagram posts 
that include striking images, graphs and videos can direct 
audiences toward more in-depth reports, briefing notes and 
media reports about vulnerability assessment results, while 
enabling the popularization of ideas that might otherwise be 
overlooked in decision-making processes. 

Finally, it is important to be aware of the problems inherent 
in communicating CCVA results. Two particular kinds of 
content that need special attention are those of uncertainty 
and vulnerability. Scientific uncertainty is vastly different to 
the common use of the term, and this point needs to be clearly 
refreshed for certain audiences. While uncertainty needs to be 
made transparent, authors are strongly urged to clarify that 
uncertainty does not mean ignorance. Where possible, we 
also encourage authors to quantify uncertainty and provide 
descriptions of what is known and what is uncertain with 

examples of why something might be uncertain. For example, 
one might have highly robust data indicating the way in which 
a species will react across a soil moisture gradient, showing a 
clear preference for a specific kind of wet habitat (e.g., 75% 
soil moisture). However, we may still be uncertain about 
how climate change will affect soil moisture in a particular 
area and hence, the species’ response in that location would 
be uncertain. Another example is sea level rise. We are highly 
certain that sea level will rise, but we are less certain about the 
magnitude of the rise. An appropriate way of communicating 
such CCVA results would include scenarios that encompass 
the species’ known (or likely) responses to favour wet habitats, 
likelihoods of how those habitats might be affected, and the 
uncertainties surrounding how a species will respond to new 
conditions where its preferred habitat(s) cannot be found. The 
uncertainty is not in the species’ preferences, but in how the 
habitats will change and how the species will respond to a new 
climate. It may be helpful to emphasize what we know based 
on applied principles of ecology, physics and/or chemistry, with 
very little uncertainty, first and foremost. 

We re-emphasise here that CCVAs provide information for 
adaptation planning and conservation management, and that 
CCVAs are not a substitute for adaptation planning. CCVAs 
determine and report on vulnerability assessment findings but 
do not necessarily include management recommendations. This 
is because management decisions need to also be formulated 
around additional factors that are independent of the CCVA 
(e.g., non-climate stressors, available budget, human capacity, 
and legal and usufruct rights). Put simply, while CCVAs should 
certainly facilitate the development of adaptation strategies and 
management plans, one should remain aware that these are 
fundamentally separate activities.

Introducing new and more effective methods of communicating 
uncertainties will help to bridge the gaps between those who 
conduct CCVAs and the audiences they target. Learning more 
about an audience is key to targeting them, and understanding 
their biases and world-views is important. Through effective and 
targeted communication of vulnerability assessment results, we 
can increase the likelihood that their findings will be used to 
design and implement effective adaptation strategies to protect 
vulnerable species and to inspire efforts to fill data gaps. 
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As a new and emerging field in conservation biology and 
ecology, CCVA faces many shortcomings which present both 
frustrations and exciting opportunities for those wishing to use 
and develop them. Here we present a few key recommendations 
for work to advance this field.

9.1 Validation of assessments

As discussed in Section 6.7 (CCVA validation), validation 
of CCVA results may be carried out statistically or by 
comparing species’ predicted changes with those observed 
in situ. Observation-based validation is considered the most 
robust approach currently available, and may be conducted by 
hindcasting species’ responses to climatic events of the distant 
past using paleo-data or by examining species’ responses to 
anthropogenic climate change so far. The latter has been 
carried out largely using correlative approaches, and both 
adherence and non-adherence of observations to predicted 
changes have provided valuable insights (e.g., Kharouba et al., 
2009; Dobrowski et al., 2011; Fox et al., 2014), but trait-based 
approaches in particular have been poorly validated to date and 
filling this gap is an important priority. Carrying out CCVAs 
retroactively (i.e., testing the ability of models to predict species 
changes observed over the last few decades) also provides an 
exciting opportunity. Overall, we believe that CCVA validation 
is the greatest priority for this field since testing predictive 
performance is the essential foundation for improvements in 
all CCVA approaches and methods.

9.2	 Better and more coordinated 
	 	 biodiversity data 

Much information needed for carrying out and improving 
CCVA is currently incomplete or unavailable (Butt et al., 
2016). Data describing species’ physiological tolerances (e.g. 
thermal limits) are an important need; similarly data on 
species interactions, which are emerging as significant drivers 
of climate change vulnerability for many species, are also 
required. In many cases, however, it is the poor coordination 
and disharmony of observations of biodiversity, rather than 
their shortage, that hampers global scale monitoring of 
biodiversity (Scholes et al., 2012; Joppa et al., 2016).

Increasing the quantity, quality and coordination of such 
biodiversity data is essential for a number of purposes. Firstly, 
it provides the data needed to ground-truth CCVA outputs and 
thereby to calibrate confidence in projections and to improve 

methodology. Secondly, it makes CCVA application in poorly-
assessed regions (e.g., the tropics) and taxonomic groups 
(e.g., non-charismatic species) possible, and thereby allows 
more representative and realistic reflections of the global and 
regional threats to biodiversity from climate change. Thirdly, it 
enables questions requiring measures of extinction probabilities 
and population changes to be developed using mechanistic 
models. Finally, it is an essential foundation of the monitoring 
needed to effectively integrate climate change adaptation 
into conservation plans and actions. Monitoring is essential 
for establishing the accuracy of the CCVA on which the 
adaptation plan is based, for measuring the effectiveness and 
impacts of the adaptation actions based on it, and for iteratively 
updating CCVAs, plans and actions accordingly. Citizen 
science programmes (e.g., eBird, iNaturalist), for example, are 
one mechanism leading to an increase in the availability of 
biodiversity data.

9.3 Advancing CCVA methodology

9.3.1 Combination or ‘hybrid’ methods 
that draw on the strengths of different 
approaches

Combination CCVA methods hold the potential to draw on 
the strengths of the three basic approaches. Examples of such 
combinations are described in Sections 2.2.4 (Combined 
Approaches), 4.1 and Appendix Table D, but there remains 
much room to explore CCVA advances through novel approach 
and method combinations.

9.3.2 Including the effects of changing 
frequency and magnitude of climate 
extremes and variability

Climates of the future are likely to include patterns of 
variability and extreme events that have far greater effects on 
ecological systems than shifts in means alone (Thompson et 
al., 2013). Yet despite the important roles that variability and 
extremes play in determining patterns of biological diversity, 
the ecology and conservation communities have, to date, paid 
little attention to the impacts of catastrophic events (Butt et 
al., 2016). Extreme events are challenging to evaluate due 
to their rarity and resulting small sample sizes. Nonetheless, 
Ameca y Juárez et al. (2013) have carried out an analysis of the 
impacts of cyclones and droughts on terrestrial mammals, and 
Thompson et al. (2013) propose a method for using downscaled 
climate models which incorporate predicted changes in climate 

9. Future directions in CCVA of species
Wendy B. Foden, James Watson, Ary Hoffmann, Richard Corlett and David Hole
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variability. Following Butt et al. (2016), we acknowledge the 
challenge of incorporating climate extremes and variability 
in CCVA assessments, but emphasise that omitting them will 
lead to incomplete understanding of climate change impacts 
on species. 

9.3.3 Including inter-species interactions 

Inter-species interactions are seldom explicitly considered in 
CCVAs, yet they are often important drivers of climate change 
impacts on species. Modelling new community assemblages 
into the future could provide insights into vulnerability 
assessments since climate alone is unlikely to be the only 
determinant of species’ presence in an area. Modelling the 
dynamics of predator-prey, host-parasite and pollinator system 
dynamics into the future presents an important gap and 
challenge.

9.3.4 Including human responses to climate 
change

As discussed in Section 5.2.1 (Direct versus indirect impacts 
of climate change), most current CCVA methods ignore the 
impacts of human responses to climate change on biodiversity, 
even though these could match or even exceed impacts arising 
directly from climate changes (Turner et al., 2010). Such 
responses include humans’ direct responses to the climate 
changes themselves (e.g., changing crops or land use), and 
their secondary (or indirect) responses including human 
migration in response to water shortages or rising sea levels, 
as well as responses aimed at mitigating or adapting to climate 
change (e.g., building dams and sea walls; growing biofuels; 
implementing REDD+ schemes)(Watson, 2014; Segan et al., 
2015). The general failure to include these human responses to 
climate change and their potential impacts on biodiversity is a 
serious omission in current assessments and their inclusion is a 
priority for all CCVA approaches and methods (Maxwell et al., 
2015). There are now useful summaries that describe proxies 
and projections for many such human responses are available 
(e.g., see Maxwell et al. (2015), and the development and use of 
these in the context of biodiversity assessment is much needed. 
CCVAs focusing on small spatial scales may need to engage 
with representatives of local communities to better understand 
likely human responses to climate change.

9.3.5 Including interactions between climate 
change and other threats

Related to consideration of human responses is ensuring that 
the interaction of non-climate change stressors (which are 
often but not always caused directly by human behaviour) and 
climate change is accounted for (Segan et al., 2015). Although 
an extinction crisis is already underway (Barnosky et al., 2011), 
few CCVAs explicitly consider the threats that drive this and 
the way that climate change is likely to interact with these 
threats. Exploring and understanding these interactions and 

the impacts they have both on species’ vulnerability to climate 
change and to extinction overall is an important area for 
investigation.

9.3.6 Accounting for climate change-driven 
species changes that have already occurred

Mean temperatures have already increased by 0.75oC globally, 
and by up to 2oC in some places (IPCC, 2013b; Wilgen et 
al., 2015). This has already had marked impacts on species, 
including on their distributions, interactions and behaviours 
(Parmesan & Yohe, 2003; Devictor et al., 2012), as well as on 
community and ecosystem composition (Midgley & Bond, 
2015; Pearce-Higgins et al., 2015). However, CCVAs that 
assume current stability rather than dynamic baseline states 
may produce outputs that may not be relevant for guiding 
appropriate conservation actions now (Butt et al., 2016). For 
correlative approaches, using current distributions will become 
increasingly inaccurate for calibrating models against baseline 
climates, and hence for species where ranges are known or 
likely to have shifted, historical records should be used instead. 
Using current climates as a baseline is also problematic, 
however, since extant populations of species with slow or lagged 
responses (e.g., long-lived species) may already be outside areas 
climatically suitable for their persistence, and on a trajectory 
of decline.

9.3.7 Improving trait data and selection of 
thresholds for vulnerability

There are three important avenues for improving the biological 
data upon which trait-based and mechanistic models rely. 
The first is simply to fill gaps in species coverage of existing 
traits; Foden et al. (2013), for example, found that such gaps 
were by far the largest source of uncertainty in global trait-
based CCVAs for birds, amphibians and corals. Secondly, 
empirical establishment of quantitative thresholds associated 
with vulnerability for each trait is much needed (e.g., how 
much diet specialization makes a species highly sensitive; 
how much precipitation change is too much for a species to 
accommodate). Thirdly, many of the ‘traits’ used in trait-based 
and combined-approach assessments (e.g., Garcia et al., 2014) 
are in fact proxies rather than traits in the strict sense (Violle 
et al., 2007). Empirical studies determining, for example, 
species’ physiological limits, maximum dispersal distances and 
phenotypic plasticity would allow use of traits per se rather than 
their proxies and are likely to improve the robustness of trait-
based methods. 

9.3.8 Incorporating adaptive genetic change 
and phenotypic plasticity

Though we know some species can evolve and change plastically 
over remarkably short time scales, information relevant to 
CCVA on the potential of species to adapt to climate change 
is scarce (Catullo et al., 2015). The ability of natural selection 
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to “rescue” populations from deleterious climate change 
impacts depends on the rate of evolution relative to the rate 
of climate change. When selection pressure is strong the 
demographic cost of selection (proportion of individuals that 
do not survive to reproduce) can be too high for the species to 
sustain, and the species will go extinct. More research is needed 
into factors that set the rate of evolution and whether or not 
existing genetic diversity is adequate for adaptive responses to 
anticipated climate change (Edwards, 2015). Also necessary 
is knowledge about genetic architecture and how selecting on 
sets of traits might enhance or retard selection on other sets of 
traits (Etterson & Shaw, 2001). Selection can also interact with 
phenotypic plasticity to enhance or degrade species’ responses 
to climate change, but this interplay deserves more attention. 
For example, adaptive phenotypic plasticity might allow a 
species to “buy” time before the onset of otherwise deleterious 
climate change. However, phenotypic plasticity could also 
reduce selection pressure in the interim, setting the stage for a 
harsh selective regime with a very high cost of selection when 
the limits of plasticity are reached (Reed et al., 2011). Catullo et 
al. (2015) present a general research agenda toward developing 
a predictive understanding of the role of adaptive evolution in 
mediating species’ responses to climate change.

9.3.9 Taking advantage of advances in -omics 
and next generation sequencing

With the advent of rapidly increasing amounts of information on 
the genomics and transcriptomics of many groups of organisms 
(Allendorf et al., 2010; Ellegren, 2014) including threatened 
species and their relatives, there is increasing potential to use 
this information in assisting CCVAs. DNA and RNA data can 
now be readily collected for organisms and also extracted from 
stored specimens. Partial genome or transcriptome sequencing 

to cover 1–10% of the genome can be undertaken relatively 
cheaply and used to generate thousands of SNP (single 
nucleotide polymorphism) markers (Narum et al., 2013). These 
in turn can be used to inform the past history of species and 
their likely future adaptive capacity; -omics data can assist 
in a number of ways, including determining the potential 
for adaptive changes in different populations (Hoffmann 
et al., 2015; Christmas et al., 2016), the appropriateness of 
novel approaches like gene pool mixing and genetic rescue 
in threatened species (Weeks et al., 2011), and the benefits as 
well as pitfalls of using hybridization (Hedrick & Fredrickson, 
2010) as a way of boosting adaptive capacity. See Box 6.

9.4	 Improved information exchange 
between conservation research and 
practitioner communities

In our joint objective to conserve biodiversity, conservation 
research and practitioner communities offer and receive 
services to and from each other. Practitioners typically 
highlight the needs that form the exciting new platforms for 
research and provide invaluable feedback on the application 
of research. Researchers, on the other hand, help to develop 
the methodology that supports practitioners’ decision-making. 
Keeping the exchange of such services fully and smoothly 
coordinated is essential for efficient coproduction of knowledge 
sources. Specific recommendations for focused exchange 
between these communities include: 
•	 Development of and updates to user-friendly interfaces and 

tools for CCVA.
•	 Establishment of productive partnerships between 

scientists and managers with targeted efforts to bridge 
communication gaps.

Box 6. The potential of –omics approaches for management of threatened species

There are a number of ways in which decisions on the management of threatened species under climate change can be assisted 
by genomic and transcriptomic approaches. The following list is based on a decision framework developed in a recent publication 
(Hoffmann et al., 2015) and starts from an initial evaluation of risk to interventions.

Question Potential Action if YES

1 Do all populations have sufficiently high genetic 
diversity for an evolutionary response?

Assess both neutral and functional variation across the genome. If NO, go 
to 2.

2a Do some populations have higher genetic 
diversity than others?

Identify genetic diversity hotspots/refugia across the landscape.

2b Are some populations adapted to local 
climate?

Identify past selection on climate related loci. If local adaptation (2b) and 
diversity hotspots (2a) are present, go to 3.

3 Is gene flow high enough? Complete picture of historical and current gene flow. If NO, go to 4.

4 Can gene flow patterns be restored? Compare contemporary and past patterns of gene flow. If NO go to 5.

5 Is a positive evolutionary response possible 
through natural gene pool mixing or natural 
hybridization?

Identify potential for gene pool mixing and hybridization with molecular 
markers from nearby populations/species as well as dangers (if genetic 
distance is too large). If NO, go to 6.

6 Is enforced hybridization and ex situ 
conservation possible?

Consider an enforced hybridization plan informed by genomic data, 
and ex situ conservation to maintain genetic diversity through breeding 
programmes.

9. Future directions in CCVA of species
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•	 Gathering and communication of ‘lessons learned’ and 
recommendations from both the practitioner and research 
communities (either independently or in combination) 
regarding CCVA, its use in climate change adaptation, and 
on biodiversity monitoring.

•	 Development of an evidence base (e.g. ConservationEvidence.
com) covering examples of the use of CCVA for climate 
change adaptation. This should specifically include details of 
problems, inaccuracies and failures, as well as their causes.

•	 Development of and updates to best practice guidelines for 
climate change adaptation planning and implementation.

9.5	 Better use of CCVA to inform 
conservation planning

A focus simply on which species are most vulnerable is clearly 
useful for generating comparative lists, but without the right 
framing, may not be useful for conservation actions on 
the ground (Butt et al., 2016). Some studies have begun to 
investigate planning and prioritization using CCVA, including 
how this information is being used and developing decision 
pathways for reducing the impacts of climate change. Shoo et 
al. (2015), for example, provide a very comprehensive decision 
framework for climate change-specific management actions. 
The Adaptation for Conservation Targets (ACT) framework 
developed by Cross et al. (2012) presents a two-phase process, 
the first step of which is to identify the conservation feature 
and define the management objective. By doing this, the ACT 
framework aims to translate general recommendations into 
actions specifically linked to species, habitats or sites (Cross et al., 
2012). This focus on establishing the management objective(s) 
at the outset of the process enables conservation managers to 
apply the framework to their specific target and allows for other 
important adaptation components to be considered. However, 
where such vulnerability frameworks are not objective-based, 
they may merely increase the list of actions rather than help us 
choose between them. We need to be clear about the intention 
of the vulnerability assessment and what we need to do in 
response, and by designing the assessment around an objective, 
this can be achieved (Game et al., 2013). Specifically, managers 

can use components of vulnerability in adaptation planning 
exercises by identifying possible adaptation responses that 
reduce exposure, enhance adaptive capacity, and possibly even 
reduce sensitivity (Stein et al., 2014).

9.6	 Explore the links between CCVA of 
species and implications for people

The principal objective of most CCVAs is to understand the 
potential impacts of climate change on a species and implications 
for its conservation, for example, by improving conservation 
planning (see Section 3 Setting Climate Change Vulnerability 
Assessment Goals and Objectives). Yet particularly for those 
species that have direct utilitarian use, planning should include 
the interaction between climate change impacts on a species 
and its ongoing exploitation by people, to try to ensure that 
continuing exploitation is sustainable. Examples include 
CCVA of medicinal plants, fuel-wood and timber trees, 
freshwater fishes and bushmeat species in the Albertine Rift 
(Carr et al., 2013). Addressing such linkages at the CCVA stage 
can also highlight a potentially incipient livelihoods crisis (e.g., 
potential fishery collapse), as well as generating a further crucial 
argument for driving effective conservation management of 
that species.

More broadly, where a particular species represents a 
‘keystone’ or ‘engineer’ species, a CCVA represents a first step 
in our understanding of how impacts on that species may 
have cascading impacts for the entire ecosystem of which 
it is a component. Climate-driven increases or decreases in 
abundance of a species, local colonization or extinction may 
have important ramifications for ecosystem function and 
hence the services being provided to people. While such 
considerations are unlikely to be a major issue for many species 
and most CCVAs, such evaluations will become increasingly 
important as climate change proceeds and as efforts increase 
to help people adapt to climate change and reduce climate risk 
with the aid of biodiversity and ecosystem services (so-called 
ecosystem-based adaptation (EbA)(Andrade et al., 2011; Jones 
et al., 2012)).
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10. Case studies

Golden Plovers (Pluvialis apricaria) are vulnerable to climate change driven increases in the frequency of summer droughts, as this causes 
a reduction in the abundance of peatland-breeding craneflies (family: Tipulidae), their primary prey. It has been shown, however, that 
blocking both drainage ditches and erosion gullies raises water levels and thereby helps to increase cranefly populations. 
Golden Plover © Nigel Clark / BTO. Cranefly © James Pearce-Higgins/BTO. Drainage ditch © James Pearce-Higgins/BTO

Table 12. List of case studies and the approaches, ecosystems, spatial scales and resource scenarios they cover.
Abbreviations: CCVA, Climate Change Vulnerability Analysis; PA, Protected Area; PVA, Population Viability Analysis; SDM, Species Distribution Model; 
TVA, Trait-based Vulnerability Assessment

Cases 1 2 3 4 5 6 7 8 9 10
CCVA 
approach

Correlative Correlative Correlative for 
small-range 
species

Mechanistic TVA TVA Combined
Correlative 
- TVA

Combined
Correlative - 
Mechanistic 
(complex)

Combined
Correlative 
–TVA

Combined 
(all)

Reference 
and topic 
area

(Reside et 
al., 2012)
Range 
shifts in 
Australian 
tropical 
savannah 
birds

(Hole et al., 
2011)
Bird 
turnover in 
African PAs

(Platts et al., 
2014a )
Amphibians in 
Africa; multi-
dimensional 
niche envelopes 
where SDM 
impossible; can 
add traits

(Lacy et al., in 
prep)
Metapopulation/ 
PVA modelling 
of polar bears on 
Svalbard (non-
spatial)

(Butler et al., 
2014)
Freshwater 
fish in North 
America

(Foden et al., 
2013)
Global 
Corals 
(section of 
IUCN CCVA)

(Baker et al., 
2015)
Correlative 
models that 
include 
dispersal 
parameters; 
use for PA 
planning

(Fordham 
et al., 2013) 
Iberian Lynx; 
Combines meta-
populations, 
habitat, 
interspecific 
interactions, 
climate

(Garcia et 
al., 2014)
Traits show 
where 
SDMs may 
over- and 
under-
estimate 
risk

(Thomas et al., 
2011) 
Assessment 
method that 
includes trait, 
correlative & 
mechanistic 
approaches

Issues 
covered

SDMs of 
mobile 
species in 
variable 
environment

Use for PA 
planning 
and by PA 
managers 

Small distribution 
ranges

Polar;
Detailed single-
spp. focus

Freshwater 
species; 
inclusion 
of indirect 
threats

Sea 
temperature; 
ocean 
acidification

Single species 
focus; use for 
PA planning

Detailed single-
species focus; 
interspecific 
interactions; 
simulates 
conservation 
interventions

Using 
results from 
SDMs and 
TVAs

Can 
accommodate 
multiple 
methods

Ecosystem Terrestrial Terrestrial Freshwater, 
Terrestrial

Marine, Polar Freshwater Marine Terrestrial Terrestrial Terrestrial Terrestrial

Taxonomic 
focus

Birds Birds Amphibian Mammal Fish Coral Birds, 
mammals, 
amphibians

Mammal Amphibians Butterfly, 
beetle

Taxonomic 
scope

Many 
species 

Many species Single or multiple 
species 

Single Many 
species

Many species Many species Single species Many 
species

Many spp.

Spatial scale Landscape 
(Australia)

Landscape 
and/or site 
(African PAs)

Regional 
(Sub-Saharan 
Africa)

Sea/Land-scape
(Svalbard)

Local 
(subnational)

Seascape 
(global)

Landscape 
(West Africa)

Landscape Landscape Site/
Landscape
(Britain)

Data 
requirements 

High Medium Medium/Low High Medium/ 
Low

Medium/ 
Low

High/Medium Very high Medium Medium/Mixed
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Table 13. Key to selecting case studies appropriate to your CCVA objectives. 
Relevance of case studies: red = very; orange = somewhat; yellow = marginally; white = very little

CCVA Objectives 1 2 3 4 5 6 7 8 9 10

Taxonomic Focus

	 Single-species focus

	 a) Climate change vulnerability factors

	 b) Inter-species interactions 

	 c) Metapopulation dynamics

	 d) Spatially explicit outputs

    Multi-species focus

	 a) Relative vulnerability of species

	 b) Range shift projection, identification of climate refugia and 
	     migration corridors

Site/Site Network Focus

	 a) Identification of most vulnerable species

	 b) Projection of range shifts and species replacements, identification 
	     of climate refugia and migration corridors

	 c) Local persistence of flagship species

Special Cases

	 a) Assessment of vulnerability of single species with restricted ranges

	 b) Assessment of vulnerability of multiple species with restricted ranges
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Case Study 1. A correlative approach for 
Australian tropical savanna birds
	
By: April Reside
Based on: Reside et al., 2012

1. Overall objectives
In tropical eastern Australia, work had been done investigating 
the likely impact of climate change on tropical rainforest fauna. 
However, no studies had been conducted on the habitats that 
make up the vast majority of tropical Australia – tropical 
savannas. This study began to address this gap by focusing 
on tropical savanna birds, as birds were the best surveyed 
taxonomic group and therefore had the most comprehensive 
datasets.

Summary of the CCVA objectives
Objectives 1.	Investigate the impact of climate 

change on the amount and location of 
suitable climate space for species

2.	Investigate the impact of different 
dispersal scenarios on future 
projections of species distributions

3.	Estimate the change in species 
richness from baseline to 2080 using 
modelled projections of species 
distributions and realistic dispersal 
scenarios

Taxonomic focus Birds
Geographic Focus Australian tropical savannas
Time frame From baseline (1990) to 2080

2. Context
Tropical savannas make up nearly a quarter of mainland 
Australia, extending from the eastern coast across the 
continent to the western and northern coasts. The tropical 
savannas are characterized by highly variable annual rainfall, 
to which occupying species have adapted by having low 
dietary specificity or by being highly mobile and thereby able 
to track shifting resources. Generally speaking, savanna biota 
is thought to be robust in the face of environmental change, 
due to being widespread and occurring with highly variable 
conditions. However, evidence of decline of many mammal 
and bird species in this region has been accumulating, causing 
conservation agencies to question this widely held belief. Further 
investigation was needed to understand how savanna species 
were likely to be impacted by climate change. Furthermore, the 
understanding of how species within key biogeographic regions 
within the savannas were similarly impacted by climate change 
was needed to focus conservation attention.

The Australian Federal Government’s lead research 
organization, CSIRO, and James Cook University funded a 
project to: 1) develop species distribution modelling methods 
appropriate for use on highly mobile species in a highly variable 
environment; and 2) model the species’ distributions under 
different climate change scenarios. 

3. Rationale for approach and methods	
We selected a correlative approach to examine climate change 
vulnerability. Firstly we modelled the species’ distributions 
under climate change scenarios and investigated the resulting 
projections of suitable climate space, and how these varied with 
different dispersal scenarios. In a second, separate and as yet 
unpublished step, we combined these correlative models with a 
trait-based approach to generate a comprehensive comparative 
climate change vulnerability analysis.

Suitability of methods
Correlative Trait-based Mechanistic Combined

Meets 
objectives?

Yes Yes Possibly Yes

Resources 
available?

Yes Yes No Yes

Selected? Yes Yes (separate 
study)

No For a 
follow-up 
assessment

We selected Maxent (Phillips et al., 2006) for carrying out 
correlative modelling because collaborators were involved in 
the species distribution modelling method evaluation which 
found Maxent to be the strongest performing algorithm 
among those tested (Elith et al., 2006). We were provided use 
of James Cook University’s High Performance Computing 
Cluster which allowed us to carry out parallel modelling of 
hundreds of species and multiple future scenarios in a relatively 
short time. The modelling involved 243 bird species, three 
emissions scenarios (SRES A2, A1B and B1) (Nakicenovic et 
al., 2000), 30 General Circulation Models (GCM) (Cubash 
et al., 2001) and ten time slices; equating to 218,700 outputs, 
which required approximately 13 years of parallel processing.

4. Application of methods
Birds were chosen as a focus because most of the data for 
savanna biota are for birds, and because of evidence of decline 
in some of the bird foraging guilds in this region. Trait-
based data are available for most Queensland species, so this 
study examined Queensland savanna bird species for which 
suitable data were available. The main occurrence data source 
was BirdLife Australia, which has now shared the data with 
Atlas of Living Australia. Data on species dispersal abilities 
were compiled from the literature, and from data collected by 
CSIRO’s savanna biodiversity research team. Many months 
of work was involved in vetting the species occurrence data, 
involving the removal of obviously erroneous records. The 
climate data were obtained from the Australian Water 
Availability Project (Grant et al., 2008, Jones et al., 2007), and 
the climate layers were created using the “climates” package 
in R (VanDerWal et al., 2011a). Model post processing was 
done using the “SDMTools” package in R (VanDerWal et 
al., 2011b). While access to James Cook University’s High 
Performance Computing Cluster made this work possible, 
processing the large input datasets and high volume of output 
models was challenging. Having access to the modelling 
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Peninsula were projected to lose the most suitable climate space 
across all species. These species are likely to be particularly 
vulnerable because of their small distributions (particularly in 
comparison to other species) and the alteration of fire regimes 
in recent decades (Reside et al., 2012a).

This study found that the dispersal scenario used for calculating 
the amount of suitable climate space into the future can 
dramatically change the predicted outcomes for species. In 
particular, comparing the extremes from unlimited dispersal 
(i.e. a species is able to disperse as far as required in order to track 
suitable climate) to no dispersal (i.e. species would only be able 
to occupy suitable climate space in the future if it overlapped 
currently suitable areas) show completely different stories, from 
substantial increases in species to substantial decreases. Neither 
scenario is likely to be accurate, as many species are already 
more restricted than their modelled climate envelope and there 
is a lot of evidence of birds dispersing outside of their historic 
range in recent years. Tailoring dispersal scenarios to individual 
species dispersal abilities is important for having more accurate 
projections of climate change impacts.

6. Conservation outcomes
These results were disseminated through publication of the 
research paper in a scientific journal (Reside et al., 2012) and 
presentations at various conferences and seminars, including 
PhD pre-completion seminars, lab seminars at the Durrell 
Institute of Conservation Ecology at Kent University in the 
UK and La Sapienza University in Rome, and the Ecological 
Society of Australia annual conferences. The results from this 
study may have had little uptake; however, the modelling 
methods were subsequently applied to 2,000 vertebrate species 
across Australia in a follow-up study (Reside et al., 2013), 
and these results have had widespread use and uptake. The 
main stakeholders interested in these results include state 
governments across Australia, Natural Resource Management 
groups and other researchers. The results of these studies have 
been incorporated into climate change adaptation plans for the 
Natural Resource Management groups and in land acquisition 
for the National Reserve System.

7. Room for improvement
This study and the subsequent studies (Reside et al., 2013) 
could be improved by evaluating the impact of using the chosen 
modelling algorithm (Maxent) on the projected outcomes. 
Furthermore, fully understanding how species will respond to 
climate change will require information on individual species’ 
sensitivity to change and their adaptive capacity. Work on 
incorporating these factors into the vulnerability of savanna 
birds to climate change has been conducted, and is currently in 
review for publication (Reside et al., in review). When this work 
began, few if any frameworks for trait-based approaches were 
available. As a result, it proved exceedingly difficult to convince 
reviewers of the validity of combining correlative-modelling 
and trait-based approaches to assess species vulnerability to 
climate change. For this reason, this study with the combined 

support of Assoc. Prof. Jeremy VanDerWal at JCU was 
essential for the success of this project.

A challenge encountered was how to present and create a 
coherent story from the >200,000 outputs. After various 
iterations, it was decided to only present the outputs from the 
moderately severe emissions scenario modelled (SRES A1B) 
because this enabled a more coherent narrative of the results, 
and it was a mid-range scenario. We believe this is justified 
because the outputs from the various emissions scenarios did 
not influence the direction of change, or the spatial realization 
of change. Only the length of time taken to reach a specific 
outcome varied.

In the paper, a mean projection for each time slice was presented 
for A1B for species. These projected distributions were converted 
to binary ‘suitable’/’not suitable’ using a Maxent-derived 
threshold of suitability; these thresholded binary outputs were 
summed to give an estimate of species richness for each time 
slice. This was done for each of the different dispersal scenarios 
so the results could be compared.

The outputs consisted of a modelled distribution for each 
combination of species, emissions scenario, GCM and time 
slice. From this, mean projections for each species, time 
slice and emissions scenario were generated. These were later 
incorporated into the trait-based analysis, which is still 
in review.

We examined how species with different migration/movement 
strategies were likely to fare under climate change. We 
compared the amount of future climate space projected to 
remain suitable for species that were migratory, nomadic, 
partially migratory, sedentary, or species with both nomadic 
and sedentary populations. Many of the species in our study 
also occurred widely outside the savanna region; e.g., some 
occurring along the mesic east coast and some occupying both 
savanna and arid regions. We compare the amount of projected 
future suitable climate space between species with different 
biogeographic affiliations. Finally, we examined the amount 
of climate space projected to remain suitable for species that 
were listed as threatened under state, federal and international 
conservation listings.

5. Summary of results
Migratory species and those mainly confined to tropical 
environments were projected to lose the least suitable climate 
space by 2080, and in fact some species confined to tropical 
environments were predicted to see a substantial increase in 
suitable climate space by 2080 (Reside et al., 2012b). This was 
largely driven by the projections for increases in rainfall in the 
centre of the tropical savanna area. These projections for the 
future are likely to be realized to some extent, as conditions 
for savanna birds in this area have been shown to improve due 
to increases in rainfall in the past 60 years (VanDerWal et al., 
2013). However, the tropical species confined to Cape York 
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approach is still in review, having been in development for at 
least five years. Should this or similar studies be started again, 
following previously published combined and trait-based 
approaches would be highly recommended.

Further improvements could be more outputs made available 
through supplemental online material. Current models 
and future projections of the distributions of all Australian 
vertebrates are now available online with a user-friendly 
interface.
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Case Study 2. Developing a framework 
for identifying climate change adaptation 
strategies for Africa’s Important Bird 
Area network

By: Dave Hole and Stephen Willis
Based on: Hole et al., 2011

1. Overall objectives/executive summary
Networks of sites of high importance for the conservation of 
biological diversity are a cornerstone of current conservation 

strategies, but are fixed in space and time. As climate change 
progresses, substantial shifts in species’ ranges may transform 
the ecological community that can be supported at a given site. 
Thus, some species in an existing network may not be protected 
in the future or may be protected only if they can move to sites 
that in future provide suitable conditions. We developed an 
approach to determine appropriate climate change adaptation 
strategies for individual sites within a network that was based 
on projections of future changes in the relative proportions 
of emigrants (species for which a site becomes climatically 
unsuitable), colonists (species for which a site becomes 
climatically suitable), and persistent species (species able to 
remain within a site despite the climatic change). Our approach 
also identifies key regions where additions to a network could 
enhance its future effectiveness. Using the sub-Saharan African 
Important Bird Area (IBA) network as a case study, we found 
that appropriate conservation strategies for individual sites 
varied widely across sub-Saharan Africa, and that key regions 
where new sites could help increase network robustness 
varied in space and time. Although these results highlight 
the potential difficulties within any planning framework that 
seeks to address climate-change adaptation needs, they also 
demonstrate that such planning frameworks are both necessary, 
if current conservation strategies are to be adapted effectively, 
and feasible, if applied judiciously.

Summary of the CCVA objectives
Objectives 1.	To determine appropriate climate 

change adaptation strategies for 
individual sites based on future 
projections of species turnover.

2.	To identify key regions where additions 
to the network could enhance its future 
effectiveness.

Taxonomic focus Birds
Geographic Focus Sub-Saharan Africa
Time frame From present (2010) to mid- (2050) and 

end-century (2080)

2. Context
BirdLife’s Important Bird Area (IBA) network (now Important 
Bird and Biodiversity Area network) across sub-Saharan Africa 
represents the largest systematically identified network of sites 
(803 in total) on the continent that are globally important for 
the persistence of biodiversity. As for any large-scale network 
of important sites for biodiversity, climate change may have 
significant negative repercussions for its long-term effectiveness 
in terms of preserving the species the network was designed 
to conserve, as those species track (or attempt to track) their 
shifting climatic niches. Potential climate change impacts on 
the network were addressed in an earlier study (Hole et al., 
2009) commissioned by the Royal Society for the Protection 
of Birds (RSPB). Follow-up research then sought to determine 
broad adaptation strategies for individual sites within the 
network, based on projected shifts in the climatic suitability of 
each IBA for the 815 species for which the IBAs were identified. 
It also recommended where additions to the network might 
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increase its effectiveness under a changing climate. Durham 
University (UK), a leading institution in the assessment of 
climate change impacts on biodiversity, carried out the work, 
in collaboration with BirdLife International and RSPB.

3. Rationale for approach and methods 
Given the large taxonomic and geographic scope of this case 
study (815 species, all of sub-Saharan Africa), correlative 
methods were selected. Data limitations for most of these 
species precluded the use of mechanistic modelling, while trait-
based assessments would have been inadequate for providing 
the necessary spatial component to understand heterogeneity 
in climatic suitability of individual IBAs. Fortunately, locality 
data for all species of interest were available from the University 
of Copenhagen at sufficient (though not ideal) spatial resolution, 
making the correlative approach particularly appealing.

Suitability of methods
Correlative Trait-based Mechanistic Combined

Meets 
objectives?

Yes No Yes Yes

Resources 
available?

Yes No No No

Selected? Yes No No No

Climate Response Surface (CRS) models were selected for their 
previously demonstrated utility in modelling projected climate 
impacts on birds (Huntley et al., 2006b). Generalized Additive 
Models (GAMs) were also applied in order to assess uncertainty 
resulting from modelling methodology. 

In order to meet the goals of our case study, our primary need 
was to develop an understanding of how priority bird species 
might change in terms of their representation (i.e. either 
disappear from, colonise, or continue to persist in) individual 
IBAs across the entire sub-Saharan African IBA network, as 
a result of climate change. Correlative models, despite their 
acknowledged limitations (e.g., Pacifici et al., 2015) provided 
us with a methodology that enabled us to project presence/
absence within individual IBAs over time, across a large 
number of species. Our resulting framework describing climate 
change adaptation strategies for all sites in the network based 
on this broad suite of species (see below), was therefore more 
robust to bias resulting from a few poorly fitted models, than if 
we had based it on a handful of species-specific projections for 
individual IBAs.

4. Application of methods
We assessed all (815) “priority” species (i.e. those that trigger 
IBA designation) in sub-Saharan Africa, because it is shifts 
in their distributions and representation within IBAs that 
could most impact the future efficacy of the network under 
climate change. They include all globally threatened, restricted 
range and biome-restricted species (note that we excluded the 
small number of congregatory species that also trigger IBA 
designation).

Data for modelling of all 815 species were obtained from 
the Zoological Museum of the University of Copenhagen 
at one-degree resolution. This was the most reliable and 
comprehensive dataset available at the time. ‘Current’ climate 
data were obtained from Worldclim (http://www.worldclim.
org) at 2.5’ resolution and aggregated to 10. Future climate data 
were obtained from the IPCC’s data archive (Third Assessment 
Report). Significant computational resources were required 
to downscale and combine the current climate data with the 
future anomalies (note that these analyses were conducted in 
2007 and future climate scenarios are now readily available). 
Uniquely, we were able to validate our modelling approach 
by comparing modelled IBA species inventories with current 
community composition of a sub-set of IBAs for which we had 
‘observed’ data, based on actual species lists. Such observed 
data, while critical for model validation, are a major challenge 
to obtain and were only available as a result of BirdLife 
International’s extensive contacts with local organizations in 
the region.

Models were developed for each of the 815 species using 
point locality data and four bioclimatic variables (selected 
for their previously demonstrated utility in modelling avian 
distributions; Huntley et al., 2006b) covering the entire 
sub-Saharan African region. Each species model was then 
projected onto individual climates characterized for each 
IBA, for the present and for three future climate projections 
(derived from three separate General Circulation Models 
that capture the range of variability in future projections of 
precipitation (Hole et al., 2009)) and two future time periods 
(centred on 2055 and 2085). Modelled current and projected 
future probabilities of occurrence were then used to generate 
current and future ‘expected’ species inventories for each 
IBA. These modelled inventories were then validated against 
the ‘observed’ species lists for our subset of IBAs, indicating 
adequate robustness for us to move forward. For each IBA, 
models for the 815 species, for the present and future time 
periods, were then used to estimate the proportions of 
colonizers (species for which a currently unsuitable IBA 
becomes suitable in the future), emigrants (species for which 
an IBA that is currently suitable becomes unsuitable in the 
future) and persistent species (species for which an IBA that is 
suitable in the present remains suitable in the future). Finally, 
climate change adaptation strategies for each site within the 
network were defined, based on the relative proportions of 
each of these three groupings of species within each IBA. We 
also used the models generated for the 815 species to evaluate 
where additions to the network could facilitate range shifts and 
fill gaps, by identifying: i) regions that our models suggested 
would be most important in the future for priority species least 
well supported by the existing network; ii) regions into which 
large numbers of priority species are projected to move; and 
iii) regions that are least well covered by the existing network 
(based simply on the distance from each 0.250 grid cell in sub-
Saharan Africa to the nearest IBA).
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5. Summary of results
The framework synthesising model projections for all 815 
species for assigning high level adaptation strategies for 
individual sites is quite simple. We calculated mean proportions 
of projected emigrant and colonist priority species for each IBA, 
for each period, as the mean of the values for the three future 
projections. We then plotted the ensemble mean proportion of 
projected emigrants against the ensemble mean proportion of 
projected colonists for each IBA. We used the median, lower 
quartile, and upper quartile of values along each axis to divide 
the area of the resulting graph into five sectors (Figure CS 2.1). 

Figure CS 2.1. Schematic showing how IBAs (red dots) 
were allocated to one of five categories, based on their 
respective proportions of emigrants, colonists and 
persistent species (derived from Hole et al., (2011)).

Finally, we classified each IBA into one of five categories 
according to the graph sector into which it fell: high persistence, 
increasing specialization, high turnover, increasing value, and 
increasing diversification. We then used the character of the 
projected changes in the proportions of emigrant, colonist, and 
persistent priority species in each category to identify general 
principles for the CCAS most appropriate for IBAs in that 
category, recognizing the contribution made by each category to 
achieving the goals of the entire network. We inferred changes 
in the proportion of persistent species from the proportion 
of emigrants (if the proportion of emigrants was high, the 
proportion of persistent species must, by definition, be low, and 
vice versa). We also determined the category-specific relevance 
of the likely need to adopt management actions that promote 
resistance (forestall effects and protect highly valued resources), 
resilience (improve capacity to return to desired conditions 
after disturbance), or facilitation (facilitate transition from 
current to new conditions). Finally, for each category, we 
determined the character and relative importance of five key 
management actions (drawn from Heller & Zavaleta, (2009), 
Mawdsley et al., (2009), Millar et al., (2007), and Galatowitsch 
et al., (2009)) aimed at enhancing the adaptive capacity of a 
site’s complement of priority species: habitat restoration and 
creation; disturbance regime management; translocation; 
increase in site extent; and matrix management. 

Additionally, we combined our three indicators of where 
additional sites could add to future network resilience into 

a single index of ‘added value’ and mapped it across sub-
Saharan Africa.

Sites in the high persistence and high turnover categories were 
twice as common as the other three categories. The distribution 
of site categories was strongly geographically patterned. In 
particular, the high persistence category predominated in the 
Guinea–Congo region and much of West Africa, whereas 
the high turnover category predominated in the southern 
African tropical zone (stretching from Namibia and Angola 
to Mozambique and Tanzania). Elsewhere, for example, in 
northern east Africa (Ethiopia, Somalia, Kenya and Uganda) 
and in South Africa, no one category predominated. Larger 
increasing value IBAs were principally on the Saharan margin 
(Niger, Chad, and Sudan) or in the arid southwest (primarily 
Namibia). Smaller IBAs in this category were widely scattered. 
In terms of potentially optimal locations for additional sites, 
these were located primarily in Gabon, Congo, Namibia, 
Botswana, eastern South Africa, southern Mozambique, and 
from Tanzania through the Albertine Rift north to Ethiopia 
and Somalia.

6. Conservation outcomes
Results were disseminated through the peer-review literature, 
through presentation of the results at international conferences 
and at BirdLife Partnership meetings, and through the 
Partnership’s extranet website. As BirdLife Partners 
(particularly those in developing countries) move towards 
developing and implementing coherent strategies for climate 
change adaptation, the Hole et al., (2011) approach is unique 
in providing generic guidance on adaptation actions to 
implement, that are informed by projected impacts at the scale 
of individual sites.

7. Room for improvement
Finer resolution species distribution data and mechanistically 
down-scaled climate data (i.e. using a regional climate model 
rather than the simple statistical approach used here) would 
have improved the robustness of our results – yet such data 
were simply not available at the time, and still aren’t at the pan-
African scale.

More broadly, there is a need to better integrate into funding 
proposals and project planning, the financial resources and 
activities needed for translating the content of published 
scientific papers into adaptation guidance that is carefully 
targeted at relevant constituencies (e.g. site managers), as well 
as the resources for dissemination.
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Case Study 3. Back to basics with 
African amphibians

By: Philip J. Platts and Raquel A. Garcia
Based on: Platts et al., 2014a

1. Overall objectives
For CCVAs employing correlative techniques such as species 
distribution modelling (SDM), a particular challenge is that 
species with insufficient numbers of occurrence records cannot 
be modelled. Depending on the scale of analysis, this can mean 
leaving out many range-restricted species, which are typically 
the ones of highest conservation concern (Schwartz et al., 2006, 
Platts et al., 2014a).

Does this omission of range-restricted species matter, when 
assessing spatial patterns of vulnerability across a higher 
taxonomic rank? If either of the following hypotheses is 
correct, then the answer is likely to be yes: (1) species omitted 
from correlative SDM have, on average, different climatic 
niches to those species eligible for modelling; (2) omitted 
species and eligible species are projected to experience different 
climate anomalies in the future.

Summary of the CCVA objectives
Objectives 1.	To test hypotheses about large-scale 

conservation priority schemes.
2.	To assess spatial bias in CCVA results.

Taxonomic focus Amphibians

Geographic focus Mainland Africa south of the Sahara

Time frame Late-20th century through late 21st century

2. Context
Correlative models that predict species distributions under 
climate change are frequently applied in the scientific 
literature, and are widely cited by conservation planners 
seeking to determine whether existing priorities will remain 
valid under future climates. Such models must be underpinned 
by sufficient data on a species’ distribution to avoid spurious 
predictions (Stockwell and Peterson 2002) – a prerequisite 
that is, almost by definition, not fulfilled by many species of 
highest conservation concern, particularly at the coarse spatial 
resolutions dictated by commonly available species and climate 
data at continental scales.

This is especially true in the tropics, where species are more 
often narrow-ranging than at higher latitudes (Wiens et al., 
2006), and even common species’ distributions tend to be 
less well documented (Feeley and Silman 2011). These data 
challenges are exemplified in sub-Saharan Africa, where species 
information is patchy at best, and confounded by spatial 
uncertainties in historical records.

In light of these obstacles, it is worthwhile considering how the 
omission of range-restricted (or under-sampled) species from 
familiar SDM tools might bias CCVA results. Amphibians 
were chosen as a case study due to the high levels of threat 
they face from climate change, habitat loss and disease (Sodhi 
et al., 2008, Hof et al., 2011). Amphibians native to Africa are 
mostly endemic to the continent, making the modelling more 
tractable.

3. Rationale for approach and methods
Of the three main options for CCVA, correlative approaches are 
by far the most commonly applied. Mechanistic methods are 
rarely feasible for large groups of under-studied species. Trait-
based assessments are a viable alternative (Foden et al., 2013) 
and could be integrated with correlative approaches (Garcia et 
al., 2014, Willis et al., 2015). Here though, the objective was to 
determine the implications of restricting CCVA to correlative 
techniques.

To test the hypotheses that species omitted from SDM occupy 
different climatic niches and/or face different exposures to 
climate change, it was sufficient to perform multivariate 
ordination on the species’ point distributions. Inferring 
modelled patterns of vulnerability or future priority for 
omitted species, however, given their stated omission from 
the modelling procedure in question, is clearly troublesome. 
To evade this catch-22, it was necessary to redefine SDM in 
terms of its most basic interpretation (Busby 1991), and thence 
to modify the procedure such that any species, irrespective of 
range-size, could be included in the analysis (see below).
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Suitability of methods
Correlative Trait-based Mechanistic Combined

Meets 
objectives?

Yes No No No

Resources 
available?

Yes Yes No No

Selected? Yes No No No

4. Application of methods
Distributional data were gathered for 790 species of amphibians 
found only on mainland Africa south of the Sahara (Hansen 
et al., 2007; updated to February 2014). Matching to IUCN 
taxonomy (www.iucnredlist.org) reduced the number of 
species to 733. The data are reliable to 1° resolution (111 km at 
the equator). Each amphibian was deemed either eligible for, 
or omitted from, correlative SDM based on a ten record cut-
off (thresholds in other studies range from five to 50 records). 
Multivariate ordination (Outlying Mean Index, OMI; Dolédec 
et al. 2000) tested for differences in observed distributions 
between eligible versus omitted species, in terms of (1) climatic 
niche space and (2) projected exposure to change (climate 
anomalies).

Climate was summarized by four, weakly collinear (Pearson’s 
|r|<0.7) variables: mean temperature and annual temperature 
range, mean rainfall and rainfall seasonality. Baseline 
conditions (1950-2000) were from WorldClim (Hijmans et al., 
2005), using mean values to resample from 30” to 1° resolution. 
Future conditions (2071–2100) were from AFRICLIM: 
regionally-downscaled CMIP5 GCMs, debiased against the 
WorldClim baselines (Platts et al., 2015). Two IPCC-AR5 
emissions pathways were considered: RCP4.5 and RCP8.5. 
For temperature variables, future anomalies were computed by 
subtracting the future from the present values; anomalies for 
rainfall variables were given by the ratio of future to present. 

All amphibian distributions were projected in space and time 
using multidimensional niche envelopes (MDNE). Unlike 
modern SDM methods, this simple technique classifies 
all conditions within a species’ observed climatic range as 
uniformly viable, and conditions beyond as wholly unsuitable. 
So as to include even those amphibians with a single occurrence 
record, the interquartile range of local (30”) climatic conditions 
within the 1° grid cell(s) was used to define the envelopes. 
Future predictions were constrained under a no-dispersal 
scenario (climate change velocities at 1° resolution are expected 
to outpace dispersal capabilities for most African amphibians).

5. Summary of results
Of the 733 amphibian species, 400 have too few records for 
correlative SDM, including 92% of those threatened with 
extinction (VU/EN/CR on The IUCN Red List). Species 
omitted from SDM occupy significantly different niche space 
to eligible species: their observed distributions are characterized 
by higher annual rainfall with lower rainfall seasonality, 
cooler and less seasonal temperatures, and by more complex 

topography. This is consistent with a wider literature on the 
broad-scale tendency for climatically and topographically 
diverse/distinct areas to contain a disproportionate richness of 
narrow-ranging species (Ohlemüller et al., 2008).

Empirically-derived priority metrics (e.g., top 100 cells for 
species richness) were derived for each species set (eligible 
or omitted) and time-period (present or future), by stacking 
the modelled species distributions. These metrics were 
compared against three large-scale conservation priority 
schemes: Conservation International’s Biodiversity Hotspots 
(Mittermeier et al., 2004), BirdLife International’s Endemic 
Bird Areas (Stattersfield et al., 1998) and the World Wildlife 
Fund’s Global 200 ecoregions (Olson and Dinerstein 1998).

Congruence between empirical priority metrics and existing 
schemes was generally higher on the omitted species set than 
on the eligible species set, although this varied depending on 
the region and metric considered. Projecting empirical metrics 
under future climate, congruence with existing schemes 
reduced in western Africa while generally increasing in eastern 
and southern Africa. Overall, priorities for eligible species were 
projected to shift towards existing schemes (and thus towards 
omitted species), due to greater climatic stability at these sites. 
Similarly, while omitted species frequently lost all climate space 
at 1° resolution, persistent populations tended to coincide with 
existing priority schemes. These results are summarized in 
Figure CD3.1.

6. Conservation outcomes
Under current climate, data thresholds imposed by SDM 
systematically downplay important sites for narrow-ranging and 
threatened species. This issue spans taxonomic groups and is only 
partially mitigated by modelling at finer scales. Under future 
climate, persistence among both narrow- and wide-ranging 
species may (depending on finer-scale processes) be highest 
within sites already identified for conservation investment, and 
so the focus on these sites ought to be maintained.

The results of this study were distributed through a journal 
article (Platts et al., 2014) and associated media coverage 
(e.g., http://www.unep-wcmc.org/news/near-extinct-african-
amphibians-invisible-under-climate-change), facilitated by 
wildlife photography to engage a broader audience (www.
michelemenegon.it/).

7. Room for improvement
The ‘back to basics’ envelope models used here, while useful 
for demonstrating potentially contrasting model outcomes 
for narrow- versus wide-ranging species, should not be seen as 
sufficient in addressing the rare species problem. Rather, a wider 
range of approaches, encompassing trait-based, mechanistic 
and correlative procedures (and combinations of these) 
should be developed and deployed in CCVAs, in order that 
the vulnerability of range-restricted species can be adequately 
represented in conservation plans.

10. Case studies
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Case Study 4. Exploring impacts of 
declining sea ice on polar bears and their 
ringed seal and bearded seal prey in the 
northern Barents Sea

By: Robert C. Lacy, Kit M. Kovacs, Christian 
Lydersen and Jon Aars

1. Overall objectives
Climate change is a major threat to polar bears, and extirpation 
(local extinction of populations) of this keystone arctic species 
is expected throughout much of the species range in the coming 
decades given current climate-gas emissions forecasts. The main 
effects of sea ice reductions due to global warming in the Arctic 
on the bears are caused by reduced availability of ice-associated 
seals, which are the primary prey of polar bears. These seals 
and the bears that prey on them are also important to coastal 
human populations throughout much of the Arctic. All of the 
ice-dependent seals breed only on sea ice, so availability of this 
unique habitat is directly linked to their reproductive success 
and ongoing existence; the carrying capacity for bears is in turn 
linked to these species. This case study is a novel exploration of 

the impacts of a warming climate on the population trajectories 
of polar bears in combination with two of their key prey species 
– ringed and bearded seals – in the northern Barents Sea. The 
region is an arctic hot-spot that is experiencing rapid warming. 
We employed linked Population Viability Analysis (PVA) 
models to explore population trajectories of these three species 
out 100 years in order to inform management authorities and 
conservationists regarding the expected rates of decline within 
this species assemblage regionally. 

Summary of the CCVA objectives
Objectives 1.	Project climate impacts that cascade 

through predator-prey relationships.
2.	Understand when critical changes to 

climate conditions required by focal 
species will occur.

3.	Predict when climate change will drive 
populations to critically low levels.

Taxonomic focus Polar bear, ringed seal, bearded seal
Geographic Focus Northern Barents Sea
Time frame From present (2010s) to 2100s

2. Context
This study was conducted because of concerns regarding the 
impacts that declining sea ice conditions are having on ice-
dependent marine mammals in the Arctic (Laidre et al., 2008, 
2015; Kovacs et al., 2011). We limited the scope of the study 
to the northern Barents Sea because it is a relatively data rich 
area for the species of concern and because it is a ‘hot spot’ 
with respect to environmental change due to climate warming. 
Additionally, it is a region that does not have aboriginal 
communities that are dependent on marine resources. Thus, 
management decisions can be made without subsistence 
hunting issues arising. Polar bears were selected as the focal 
species in this study (e.g., Hunter et al., 2010; Molnár et al., 
2010) because they are a top predator that has strong influence 
on lower trophic levels and because they are a particularly 
sensitive management concern. Polar bear mothers require 
abundant, high-energy prey that is easily accessible from the 
land-fast ice (ice that makes contact with shore) in order to 
feed cubs when they emerge from dens in the spring after 
many months of fasting. This creates a critical dependency 
on the population of ringed seals that give birth to their pups 
in lairs (small snow caves) on the land-fast ice. Adult ringed 
seals and bearded seals are important prey for the polar bears 
throughout the year. Given the complexity of this system and 
the importance of these marine mammals to their ecosystems, 
the Norwegian Polar Institute and the Conservation Breeding 
Specialist Group sponsored collaboration among their scientists 
to pursue this study.

3. Rationale for approach
Our aim was to examine how impacts of climate change might 
cascade through the linkages among highly interdependent 
species. Most CCVA approaches are focused on single species, 
with the presumption that all other species with which they 
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interact are either static or can be represented as simple trends 
in resources (prey) or threats (predators, competitors, or 
disease). However, if there are tight inter-relationships between 
species, including feedbacks between them, then models that 
project each species simultaneously, as well as their interactions, 
are needed for tests of the effects on the system of climate 
change or any major disruption to either species or to their 
interactions. We chose a metamodel approach to link PVAs, so 
that each PVA informs the other(s) about the dynamic changes 
in its focal species, and the functional relationships that link 
species are explicitly modelled. The approach of linking PVAs 
to explore how environmental changes can cause cascading 
effects through ecological dependencies of species has been 
used recently to examine threats due to disease (Shoemaker 
et al., 2014), landscape conversion to agriculture (Prowse 
et al., 2013), and invasive species (Miller et al., 2016). Here, 
we apply this methodology to the disruption of species inter-
dependencies by climate change.

Suitability of methods
Correlative Trait-based Mechanistic Combined

Meets 
objectives?

No No Yes No

Resources 
available?

Yes Yes Yes Yes

Selected? No No Yes No

For long-lived species, there may be considerable lags between 
the reduction in the environmental conditions that meet the 
habitat needs of a species and the consequent response in 
population numbers, especially when the mechanisms involved 
feedbacks between species. Therefore, correlative approaches 
that assume that species distributions are in equilibrium might 
have revealed long-term consequences (over centuries), but 
would not reveal how quickly climate change impacts would be 
observable in the fauna. Trait-based approaches would similarly 
not capture interactions among species which are key to what 
will happen to the top predators in ecosystems in particular.

4. Application of methods
To build the PVAs for the three species, we relied on published 
demographic and ecological information and on the expertise 
available from researchers at the Norwegian Polar Institute. 
There are considerable data on the demography and predatory 
behaviour of polar bears, and data on the size of the Barents 
Sea population that uses two archipelagos for denning (Svalbard 
and Frans Josef Land). Demographic data on the seals are less 
detailed than the data for the polar bears, but the basic life 
histories are known. Some population size and demography data 
for the seals breeding in Svalbard are available, but the larger 
Barents Sea population and the extent of exchange between 
areas (e.g., between the seals using land-fast ice and those using 
pack ice further north) have not been previously estimated.

Left: Pinniped Specialist Group (Chair) and Climate Change SG member, Dr Kit M. Kovacs with a ringed seal pup. © Kit M. Kovacs 
Right: Ringed Seals (Pusa hispida) are totally dependent on sea ice habitats for giving birth, resting, moulting and foraging on ice-associated 
prey. Reductions in sea ice due to climate warming will have negative impacts across the species’ range. © Kit M. Kovacs and Christian 
Lydersen, NPI
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For representing the species interactions in the metamodel, 
we used general patterns of mammalian energetics and some 
specific information about the distribution of prey species and 
size classes taken by the predator. Many of these estimates are 
only approximate (and with the uncertainty not quantifiable), 
so sensitivity tests were run, varying key model parameters 
across assumed plausible ranges in order to get a sense of the 
robustness of the results. 

It was particularly challenging to obtain estimates of the key 
aspects of climate that influence the interactions between polar 
bears and the seals such as trends in the extent of land-fast ice 
on the fjords in April and the amount of snow accumulated 
on that ice, which are critical determinants of the survival of 
ringed seal pups. This in turn influences the ability of polar 
bears to rear their young, with obvious long-term implications 
for both predator and prey populations if recruitment of either 
is diminished. Lacking data on the local and seasonally specific 
snow and ice conditions, we had to rely on long-term trends 
in the average ice cover over the Barents Sea in April as our 
estimate for the rate at which the land-fast ice would decline.

For our PVA models, we used Vortex software (Lacy, 2000; Lacy 
& Pollak, 2014), so that we could employ flexible, individual-
based models to represent aspects of polar bear life history (such 
as the dependency of cubs on their mothers for about three years, 
and the delay in production of a subsequent litter until cubs 
become independent or are lost). For the two seal species, we ran 

the Vortex model as a population-based model, although other 
PVA software or even matrix-projections of demography could 
have been used as long as they could incorporate functional 
relationships to other species. The three PVA models were 
linked with MetaModel Manager software (Lacy et al., 2013; 
Pollak & Lacy, 2014), which controls the sequence in which 
each PVA simulates its (annual) time step and passes parameters 
describing the current state of each population to the other PVA 
models. The metamodel can be run on a microcomputer, and 
requires only a few hours of run-time for 100 iterations of each 
scenario tested. We focused on projections of population size, 
rather than on extinction probabilities. 

We note that due to the use of regional parameters, our analysis 
does not address species-wide threats and therefore our results 
cannot be directly extrapolated to other regions. 

5. Summary of results
The metamodel simulations projected that as springtime ice 
cover declines, the number of ringed seals young that will be 
produced around Svalbard will decline in parallel (Figure CS 
4.1 over). This will lead to a decrease in the number of polar 
bear cubs that can be reared in the region. Due to the lack of 
recruitment, the adult population of ringed seals will decline, 
but perhaps after a lag of 10 years or more due to the longevity 
of this small arctic seal (which lives up to 45 years). The decline 
of polar bears may be delayed further by decades, due to the 
continued availability of some ringed seal pups (albeit with 

Polar Bears (Ursus maritimus) are expected to be extirpated from two thirds of their current range in the coming decades due to sea ice losses 
and other negative impacts of climate change on their natural habitat. © Kit M. Kovacs & Christian Lydersen, NPI_02
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perhaps little chance for survival) until the breeding population 
of adult seals has collapsed. Bearded seals may experience a 
temporary decline as they become the primary prey available 
for adult polar bears, but then could rebound after the bear 
population declines. We did not model other effects of climate 
on bearded seals that could drive their numbers downward 
and therefore also accelerate the decline of polar bears, because 
this seal species does exhibit some resilience to sea ice losses 
including the use of glacier ice as a pupping substrate.

Figure CS 4.1. Illustrative example of one of the many 
scenario PVA runs for three Arctic mammals.  Shown are 
projections of trends in population sizes of the three species – 
with an assumption of a 1% annual decline in the springtime 
ice cover, and no dispersal between Svalbard-Franz Josef (SvFJ) 
and the Pack Ice.

Although the general trends in the effects of sea ice decline 
on the three species were perhaps predictable from the 
relationships entered into the metamodel, the magnitude and 
the timing of species responses would have been difficult to 
derive intuitively. Examination of the quantitative dependency 
of population trends on some model parameters, such as the 
rate of ice loss and dispersal patterns of the seals, required a 
quantitative model of the system.

6. Conservation outcomes
The findings were presented to representatives of the Governor 
of Svalbard (the local management authority), the Ministry 
of the Environment (national level management), the Arctic 
Council Programme AMAP (the Arctic Monitoring and 
Assessment Programme), as well as members of the IUCN 
Climate Change Specialist Group at a workshop entitled 
“From PVA to Policy” held in Svalbard in fall 2014. Although 
local authorities will not be able to stop the decline of sea ice in 
the Barents Sea, understanding the mechanisms, severity, and 
time course of impacts of climate change on priority species in 
the region can inform monitoring, identification of key areas 
that might serve as refugia that contain adequate conditions for 
polar bear survival further into the future, and management of 
indirect (e.g., mineral exploration) effects on these mammalian 
populations as well as direct impacts (e.g., harvest) on the two 
seal species locally (Laidre et al., 2015).

7. Room for improvement
This study demonstrated that PVAs linked into multi-species 
metamodels can be used to examine how aspects of climate 
change would be expected to impact species and their 
interactions. As with any analysis of complex systems, there are 
limitations on the completeness and robustness of the analyses. 
First, PVA and other mechanistic models always require detailed 
demographic information, and much more needs to be learned 
about survival rates, movement patterns, and distribution 
of breeding and foraging habitat of the arctic seals before we 
can confidently predict population trajectories. Metamodels 
that link interacting PVAs also require further development to 
accurately depict the ways in which species are inter-dependent. 

The strong dependency of Svalbard polar bears on ringed 
seal pups in the spring allowed us to explore how climate 
change can affect this important relationship. Other effects 
of climate change on these species have not been examined, 
including effects on their relationships to many other species 
(e.g., prey of the seals and other prey of the polar bears, and 
sub-arctic predators and competitors that are moving into the 
increasingly ice-free polar waters). Explicit mechanistic models 
of species interactions will probably not be possible, or at least 
not be informative of dominant trends, for the many species for 
which climate change brings about a myriad of weaker and less 
direct effects in a diverse community rather than a few strong 
couplings between species. For such cases, extending PVAs 
to include the impacts of climate change may require higher 
level description of the trends in demographic rates correlated 
to climatic variables. Understanding and modelling causal 
mechanisms may be necessary for forecasting impacts before 
they are discernible in long term data sets. 
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Case Study 5. Freshwater fishes in the 
Appalachian Mountains, USA

By: Bruce E. Young
Based on: Butler et al., 2014

1. Overall objectives
In 2012, the Appalachian Landscape Conservation Cooperative 
of the United States requested climate change vulnerability 
assessments of important species and habitats that occur in the 
Appalachian region. In response to this need, a seven-member 
scientific panel was formed to determine which species to assess 
and which methods to use to assess them. This case study 
focuses on the freshwater fish portion of the study and sets out 
to determine which species are vulnerable to climate change, 
the degree to which they are vulnerable, and the factors leading 
to vulnerability.

Summary of the CCVA objectives
Objectives 1.	Which species are vulnerable to 

climate change?
2.	To what degree are they vulnerable?
3.	Why they are vulnerable?

Taxonomic focus Freshwater fishes (104 species)
Geographic Focus The states encompassed by the 

Appalachian Landscape Conservation 
Cooperative

Time frame From present (2012) to mid-century 
(2050)

2. Context
In the United States, Landscape Conservation Cooperatives 
(LCCs) strive to better integrate science and management for 
addressing climate change and other landscape-scale issues. 
To achieve this, they bring together land managers and 
scientists from federal, state, and local governments, along 
with Tribes and First Nations, nongovernmental organizations, 

universities, and interested public and private organizations. 
The 22 LCCs align with broad ecoregion boundaries. The 
Appalachian LCC encompasses the mountainous region from 
northern Alabama to southern New York state, an area rich in 
species and habitat diversity. The region has the highest species 
richness of salamanders in the world and is among the most 
diverse in freshwater fishes.

To serve its broad range of partners, the Appalachian LCC chose 
to assess a range of fish species. Funding was limited because 
the resources available for the assessments ($84,000) had to be 
shared with the work of the expert panel to select methods and 
species, as well as used for assessments of habitats and other 
taxonomic groups. Time was also limited because the selection 
of methods and species and the assessments themselves needed 
to be completed in two years.

3. Rationale for approach and methods
Major objectives were to determine which species were 
vulnerable, their degree of vulnerability, and why they were 
vulnerable,; and hence correlative, trait-based (TVA), and 
mechanistic approaches all produce appropriate results. 
However, the time and funds allocated to the project were too 
limited to perform mechanistic analyses on a large number of 
species. Moreover, the scientific panel was concerned that the 
time available to conduct analyses was too short to compile and 
review the accuracy of locality data that would be needed for 
a correlative approach. A number of species had already been 
assessed using a trait-based approach and the panel elected to 
build on this. 

Suitability of methods
Correlative Trait-based Mechanistic Combined

Meets 
objectives?

In part Yes Yes Yes

Resources 
available?

No (not 
enough time 
to review 
accuracy of 
locality data)

Yes No (not 
enough 
time or 
funding)

Possibly

Selected? No Yes No The CCVI can 
make use of 
correlative 
model 
outputs 
where they 
exist

The method selected for applying the TVA approach was the 
Climate Change Vulnerability Index (CCVI; Young et al., 
2012), which is applicable to both freshwater and terrestrial 
species, and has already been used by state agencies to evaluate 
freshwater fishes. The CCVI is a free, downloadable tool 
programmed in MS Excel that combines information on 
climate exposure, species sensitivity and adaptive capacity 
and, if available, the results of correlative models and observed 
vulnerability to climate change, to place species in one of five 

10. Case studies
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climate vulnerability categories. Assessments may be conducted 
on a species’ entire global distribution or on any component 
part. Using this method allowed the Appalachian LCC to 
provide a database of assessments that were all conducted in the 
same manner, thereby enabling comparisons between species.

4. Application of methods
The panel first defined criteria for selecting the study’s focal 
species. Species were selected if they were (1) of conservation 
significance (e.g., listed federally under the United States 
Endangered Species Act or listed as a Species of Greatest 
Conservation Concern by a state), (2) important to the 
ecosystem where they occurred, (3) indicators that could help 
detect climate change, (3) of management importance, (4) 
had a relation to human health, or (5) had cultural value. This 
selection process led to a list of 104 species.

Most of these species had already been evaluated at least once 
in state-level or regional (e.g., southern Appalachian) climate 
change vulnerability assessments. Species that lacked previous 
assessment were assessed following the guidelines for the CCVI 
(Young et al., 2016). Briefly, the CCVI separates vulnerability 
into its two primary components: a species’ exposure to climate 
change within a particular assessment area and its inherent 
sensitivity and adaptive capacity to climate change. For 
exposure data, the assessors used climate projections provided 
by Climate Wizard (Girvetz et al., 2009; www.climatewizard.
org) for the mid-21st century, A1B emissions scenario, with an 
ensemble average of 16 Global Circulation Models. The assessors 
were familiar with the species in situ and used natural history 
and distribution information available in scientific literature to 
score 20 sensitivity and adaptive capacity factors. These factors 
included two that consider indirect effects of human-mediated 
threats: occurrence of anthropogenic barriers to dispersal that 
prevent species from tracking favourable climates and the 
installation of alternative energy infrastructure (e.g., dams for 
hydroelectric power) that would negatively impact the species. 
In cases where an SDM had been run for a species, the change 
in predicted range size, the predicted degree of overlap between 
current and future bioclimatic ranges, and the occurrence of 
protected areas in the predicted future range were also used to 
calculate and overall vulnerability category. Using the exposure 
data as a weighting factor for the trait data, the CCVI places 
species in one of six categories: Extremely Vulnerable, Highly 
Vulnerable, Moderately Vulnerable, Presumed Stable, Increase 
Likely, Insufficient Evidence.

5. Summary of results
The 104 species assessed had been evaluated 115 times in 
different assessments, with some species receiving up to four 
different assessments in different parts of their ranges. The 
results show that just over half of the species assessed appear 
to be vulnerable to some degree to climate change (Figure 
CS5.1). Few species are highly or extremely vulnerable. The 
specific traits that contributed to vulnerability vary by species. 
River-dwelling species are vulnerable to climate-driven changes 

in hydrology that could alter stream flow, as well as potential 
changes to their habitats brought about by scouring from 
more extreme precipitation events. Cold-water fishes, such as 
Brook Trout (Salvelinus fontinalis) and Slimy Sculpin (Cottus 
cognatus), are vulnerable to increasing water temperature. Some 
species (e.g., Eastern Sand Darter, Ammocrypta pellucida) are 
also tied to particular substrates that are uncommon in stream 
habitats. If their climate niche shifts, future favourable climate 
envelopes may not coincide with these preferred substrates. 
Species that inhabit lakes were generally less vulnerable to 
climate change.

6. Conservation outcomes
The final report was released in 2014 (Butler et al., 2014) 
and posted on the Appalachian LCC website where the 
data are available to partners and the public in general. As 
of this writing, it is too soon to assess the degree to which 
the information compiled in the report has been used for 
conservation efforts. Some of the assessments included in 
the study were published previously as part of state-level 
efforts to determine vulnerability of biodiversity to climate 
change (Schlesinger et al., n.d., Report et al. 2011). In turn, 
these results contributed to updates of state Wildlife Action 
Plans to address the threat that climate change poses to state 
biodiversity. Because Wildlife Action Plans play a major role 
in guiding state government conservation investments, the 
vulnerability assessment results are likely to influence decisions 
on the specific adaptation measures taken to lessen the impact 
of climate change on biodiversity in these states.

7. Room for improvement
The methods used were adequate for compiling assessments for 
a large number of species in a short period of time. Because 
most of the species had already been assessed by a particular 
method, it was efficient to employ the same methodology for 
the complete list of species. One shortfall of this approach is 
that different assessors assessed different species. Due to the 
potential for inter-assessor variation in how the trait factors 
are interpreted, ideally the same assessor or group of assessors 
would have evaluated all of the species on the target list 
(Lankford et al. 2014).

Several additional steps could be taken to enhance future 
assessments. First, the exposure data should be derived from 
IPCC AR5 climate projections to use the most current available 
data. Also, the analyses could be rerun, using both ends of the 
range of climate projections for each species’ distribution to 
“book-end” the results, to show how uncertainty in climate 
projections could influence the categories assigned to each 
species. Review of draft assessments by a group of freshwater 
fish experts would not only improve consistency in the scoring 
of the species, but also ensure that all available natural history 
information about species is utilized in the assessments. With 
more resources, SDMs could be run for each species and the 
results combined with the trait-based method to provide more 
spatial context to the assessment results. 
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Figure CS5.1. Results of a trait-based climate change 
vulnerability assessment of 104 freshwater fish species 
occurring in the Appalachian region of the United States.
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Case Study 6. A trait-based CCVA of all 
warm-water reef-building corals globally

By: Wendy B. Foden
Based on: Foden et al. 2013

1. Overall objectives
In 2007 IUCN set out to develop a CCVA method that 
could be applied to large numbers of species, including rare 
and threatened species, and which considered the biological 
characteristics that affect species’ vulnerability to climate 
change. The resulting trait-based CCVA method was piloted 
on the world’s birds, amphibians and warm-water reef-building 
corals and the results published in Foden et al. (2013). This case 
study covers the global coral assessments.	

Summary of the CCVA objectives
Objectives 1.	To provide a framework to help users to 

systematically assess the possible ways in 
which climate change may impact focal species

2.	To identify which coral species are at greatest 
risk from climate change

3.	To identify which geographic regions contain 
highest-risk species

4.	To compare species’ climate change 
vulnerabilities with their degree of threat from 
non-climatic factors (i.e. via the IUCN Red List)

Taxonomic focus All warm-water reef-building coral species
Geographic focus Global
Time frame From present (2013) to mid-century (2050) and 

end of century (2090)

2. Context
As impacts of climate change on species began to emerge, 
IUCN recognized that conservation practitioners, particularly 
those carrying out Red Listing, needed guidance on recognizing 
and predicting the many ways in which impacts may manifest, 
assessing how these contribute to vulnerability, and using 
the results to examine species’ overall risk of extinction. In 
response, IUCN’s Global Species Programme launched an 
initiative to provide a method for accomplishing this. Birds, 
amphibians and warm-water reef-building corals were selected 
as pilot taxa due to the availability of up-to-date information 
from their recent global threat assessments, their affinities with 
different ecosystems, and because of the broad scope of climate 
change impacts they are experiencing. The results of this study 
were published in Foden et al., (2013) and the approach has 
been used at regional scales to assess other taxonomic groups 
including mammals, reptiles, plants and freshwater fishes (Carr 
et al., 2013, 2014). We focus on the global CCVA of warm-
water reef-building corals for this case study since it provides a 
less common example of CCVA of marine invertebrates.

3. Rationale for approach and methods
Because our objectives included helping users to systematically 
examine the broad range of possible mechanisms by which 
climate change may impact species, correlative approaches 
including species distribution models (SDMs), which predict 
shifting climate space alone, were not suitable. In addition, 
many of the species that practitioners need to assess are rare and 
therefore are not known from enough localities to be able to run 
SDMs. Mechanistic models would have served the purpose, but 
because we intended the method to be applicable for use across a 
broad range of life history strategies, for large numbers of species, 
for those for which relatively few data were available, and to be 
relatively easy to apply without intensive technical or modelling 
expertise, the mechanistic approach was unsuitable. We selected 
a trait-based approach in order to accommodate a broad range 
of impact mechanisms, species and life history strategies; while 
the IUCN Species Information System (the database supporting 
the IUCN Red List) contained considerable species-specific trait 
data, we recognized that carrying out the CCVA would require 
collecting other data from scratch.
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Suitability of methods
Correlative Trait-based Mechanistic Combined

Meets 
objectives?

No (many rare 
species would 
be excluded; 
needed to 
explore full 
range of 
impacts)

Yes Yes Possibly

Resources 
available?

Range data 
available as 
polygons, not 
point localities: 
possible but 
not ideal

Yes, though 
necessitated 
collecting 
many 
traits from 
scratch.

No
(799 
species = 
too many!)

Possibly

Selected? No Yes No No

Only a handful of taxon-specific trait-based assessments had 
been carried out at the time the initiative started so, drawing 
on these, we developed a new method designed to be adaptable 
for use across all taxa. Using the IPCC’s vulnerability 
definition (IPCC 2007), we regarded species as of highest 
vulnerability if they were highly sensitive, highly exposed and 
poorly adaptable to climate change. We made use of expert 
knowledge and literature review to identify five generic trait 
sets or types associated with heightened sensitivity to climate 
change, and three with poor adaptive capacity (see the left 
column of Table CS 6.1 for their names, and Table 1 of Foden 
et al., (2013) for a full rationale and description). For each of 
these trait sets, we selected the specific traits that applied to 
our focal taxonomic group. 

4. Application of methods
Assessing sensitivity and adaptive capacity
To determine the suite of coral-specific traits associated with 
the sensitivity and adaptive capacity we consulted a range of 
coral experts through a workshop and individual consultations. 
Trait identification involved assessing: (i) likely climate change 
scenarios and key aspects of exposure; (ii) the mechanisms 
by which these are likely to affect the focal species; (iii) the 
traits associated with high risk from these; and (iv) availability 
of existing data sets describing these and where necessary, 
exploring the feasibility of gathering this data from natural 
history information in the literature and expert knowledge. The 
resulting suite of traits (Table CS 6.1) represents a compromize 
between the ideal theoretical traits for CCVA and pragmatic 
considerations of data availability and priorities for gathering 
new data given available time and resources. 

We aimed to assess all 799 species of warm-water reef-
building corals, but four had missing trait or distribution 
data such that we were unable to categorize them, leaving 
them as ‘unknowns’. Some data were gathered from existing 
datasets (e.g. Veron, 2000) and published literature, and much 
information was recorded from scratch based on experts’ 
knowledge. Wherever possible, we gathered quantitative rather 
than qualitative data so that analyses can be more easily revised 
in the future, as knowledge and assumptions about climate 

change mechanisms and impacts progress. Data were collected 
in Excel spreadsheets. Establishing thresholds for assigning 
species into ‘high vulnerability’ categories for each trait was 
frequently challenging and where defensible thresholds were 
not clear, we selected the worst affected 25% of species. We 
recognize that this cut-off is somewhat arbitrary and discuss 
the associated challenges and ways forward in the paper. While 
the relative thresholds result in CCVA results being relative 
rather than absolute measures of vulnerability, they remain 
valuable both for identifying the species at greatest risk and for 
exploring the likely mechanisms by which species are or will 
be impacted.

Assessing exposure to bleaching and ocean 
acidification
To assess exposure, we refined IUCN’s polygons of coral species’ 
distributions by restricting them to areas with mapped reefs 
(as defined by Reefbase (2010)), overlaid surfaces of changes in 
Sea Surface Temperature change and aragonite saturation by 
2050 and 2080 (See Table CS6.1 and the methods of Foden 
et al., 2013). We based overall results on the mid-range A1B 
emissions scenario from 1975 to 2050, and compared these 
to assessments using alternative emissions pathways (i.e., A2 
and B1) and longer timeframes (i.e., 1975–2090) in order to 
estimate uncertainty in results.

Species scores
To be assessed as of highest vulnerability overall, a species 
required ‘high’ scores in each of the three trait sets (sensitivity, 
low adaptive capacity and exposure). To qualify as sensitive, 
of low adaptive capacity or exposed, it scored ‘high’ under 
any trait in any associated trait (e.g., a species with a ‘high’ 
score under habitat specialization was then considered to 
have a ‘high’ sensitivity score). Scores were calculated under 
assumptions that the ‘unknown’ species for which insufficient 
data were available were either all of highest vulnerability or of 
lowest vulnerability. We carried out sensitivity analysis of our 
results by varying each trait scoring threshold and assessing the 
impact on the species and geographical patterns that emerged.

5. Summary of results
The method produced assessments of ‘highest’ and ‘lower’ 
vulnerability for each species under a range of emissions and 
data availability scenarios. As a baseline or reference scenario, 
we used emissions scenario A1B for 2050 and assumed the 
‘unknown’ trait species were of lower vulnerability; this was used 
to meet CCVA Objective 1, namely to assess which species are 
at greatest risk from climate change. Concentrations of species 
falling into the highest vulnerability category were plotted 
globally using GIS (Objective 2). We used species’ IUCN Red 
List statuses to compare species’ climate change vulnerability 
with their degree of threat from non-climate change related 
factors (Objective 3). Examining results under other emissions 
scenarios, time frames and assuming ‘unknown’ species were of 
highest vulnerability provided insight into the uncertainty of 
the results.
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Trait Set Trait ‘Highest Vulnerability’ Threshold

SENSITIVITY

a)	Specialized habitat and/or microhabitat 
requirements

Habitat specialist Occurs in <=13 habitats

Dependence on a particular microhabitat Depth range <= 14m

b)	Narrow environmental tolerances 
or thresholds that are likely to be 
exceeded due to climate change at any 
stage in the life cycle

Narrow temperature tolerance – larvae Broadcast spawning and/or brooding are the only known 
method(s) of reproduction

Evidence of exceedance of tolerance – 
adults

Evidence of past high temperature mortality of > 30% of 
local population on a reef or reef tract

Lower buffering from depth Maximum depth < 20m

c)	Dependence on interspecific 
interactions which are likely to be 
disrupted by climate change

Disruption of symbioses with 
Zooxanthellae algae

Has an obligate Zooxanthellae interaction and: 
(not known to have bleaching resilient clades); or  
(has resilient clades but not known to ‘shuffle’ between clades)

d)	Rarity Rarity Rare (geographically restricted or sparsely distributed) 

ADAPTIVE CAPACITY

e)	Poor dispersibility Low intrinsic dispersal capacity Maximum time to settlement of larvae ≤ 14 days

Extrinsic barriers to dispersal Dispersal likely to be retarded by currents and/or 
temperature

f)	Poor evolvability Slow turnover of generations Typical colony longevity ≥ 50 years

Low growth rate Typical maximum growth rate ≤ 30 mm year

EXPOSURE

Temperature change Exposure to temperatures known to 
cause bleaching

Highest 25%: Mean probability of severe bleaching across 
species’ range ≥ 0.85 per year

Elevated CO
2 Exposure to low aragonite saturation 

states
Highest 25%: Proportion of species’ range with aragonite 
saturation Ωarag ≤ 3 by 2050 ≥ 95.29% 

We identified coral species that we believe to be most vulnerable 
to climate change. We found that highest concentrations 
of these species occur in the “Coral Triangle”, an area 
surrounding Sumatra and Java. Considering the high species 
richness there, however, the proportion of vulnerable species 
is not higher than in many other areas. Species distributed 
in the Caribbean are slightly more likely to be vulnerable to 
climate change. We also identified the species that are both 
of highest climate change vulnerability and already listed as 
threatened on the IUCN Red List. The increasing incidence of 
coral bleaching in response to local warming events suggests 
that corals are amongst the most climate change vulnerable of 
all species groups. We therefore strongly emphasize that since 
our method produces results that are relative measures, species 
not falling into the ‘highest vulnerability’ category may well 
also be considerably vulnerable.

6. Conservation outcomes
The study identified a number of species that were flagged as of 
highest vulnerability to climate change, as well as the families 
that high number and proportions of these. These are useful at 
species level to help experts to identify species where updates 
of Red List assessments and species management plans should 
be prioritized, as well as those where more in-depth assessment 

(e.g. by including correlative model results or by mechanistic 
models) should be considered. At broader spatial and taxonomic 
scales, the results may be useful for identifying the types of 
climate change mechanisms that are prevalent for particular 
areas of species groups, and hence for developing management 
strategies. At large geographic scales, results are valuable for 
conservation planning. Regions with high concentrations of 
species of greatest concern deserve particular conservation 
attention, while those with many species that are climate change 
vulnerable but are not currently threatened are also important, 
as they potentially represent new priorities for conservation. 

The IUCN trait-based method has now been applied to a many 
different taxonomic groups and geographic regions (Carr et 
al., 2013, 2014; Meng et al., 2016), and has helped to identify 
priority species, groups and areas for conservation, including 
for World Heritage Sites. Simultaneous CCVA and Red 
Listing, particularly in East and West Africa has demonstrated 
the method’s value for helping assessors to thoroughly and 
systematically consider climate change as a possible threat and 
to incorporate this into assessments of overall extinction risk. 
The method has also been used to explore combining trait and 
correlative approaches (e.g., Garcia et al., 2014a, 2014b; Willis 
et al., 2015). 

10. Case studies

Table CS6.1. This shows generic trait sets associated with sensitivity and poor adaptive capacity (left column), the specific traits of 
warm-water reef-building corals used to assess these (middle column), and the data and thresholds according to which species were 
classified as of ‘highest vulnerability’ (right column). Measures of exposure and their data thresholds are also shown (bottom rows). 
(Adapted from Foden et al., (2013); Supplementary Table S3. More details of datasets and rationales for thresholds are discussed in the 
Supplementary Materials.)
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7. Room for improvement
Several of the traits and trait thresholds used in our assessment 
were based on a priori assumptions rather than empirical 
evidence of how each species is being impacted. With the 
advancement of related research, empirical evidence for 
thresholds may emerge and our assessments are likely to need 
to be updated. Other authors have explored more sophisticated 
approaches for combining trait scores into overall assessments 
of climate change vulnerability. Exploring this using emerging 
information on species’ observed responses to climate change 
is likely to advance our approach. Finally, IUCN plans to 
develop a module in its Species Information System (SIS) to 
both deliver and gather information on species climate change 
related traits for CCVA and Red List assessments. 
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move to higher elevations, as the peaks in the region are not especially high, they will soon have nowhere to go. © Stephen Williams
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Case Study 7. Assessing climate change 
vulnerability of the West Africa protected 
area network for birds, mammals and 
amphibians

By: David J. Baker and Stephen G. Willis
Based on: Baker et al., 2015

1. Overall objectives
Climate change is already beginning to alter the distribution 
of species across the globe. Protected Area (PA) networks 
are a key element in the effort to protect biodiversity from 
rapid environmental change, yet the static nature of PAs has 
the potential to reduce the effectiveness of these networks 
as species’ ranges begin to shift. Assessing the potential for 
climate change to impact biodiversity across these networks is 
now vital in order to take the steps necessary to maintain the 
PA network’s ability to protect biodiversity.

The objective of our study was to carry out the first region-
wide assessment of the potential impacts of climate change 
on biodiversity across the West African Protected Area (PA) 
network. This was achievable for the first time due to the 
availability of carefully collated data on the distributions of 
birds, mammals and amphibians across the region, data on the 
location of protected areas and production of custom regional 
climate models that are able to capture the important climate 
characteristics of the region. 

Summary of the CCVA objectives
Objectives 1.	Assess the potential change in species 

composition (turnover) for three vertebrate 
groups (birds, mammals and amphibians) in 
protected areas across the West Africa region 
between a baseline period (1971–2000) and 
three future time periods

2.	Assess the potential change in species-
specific climate suitability for three vertebrate 
groups (birds, mammals and amphibians) in 
protected areas across the West Africa region 
between a baseline period (1971–2000) and 
three future time periods

Taxonomic focus Birds, mammals and amphibians
Geographic Focus West Africa (protected area network)
Time frame Baseline (1971–2000) to 2100, with focal 

periods of 2011–2040, 2041–2070 and 
2071–2100

2. Context
We carried out this analysis as part of the PARCC (Protected 
Areas Resilient to Climate Change) West Africa project, which 
was funded by the Global Environment Facility (GEF). The 
aim of the project was to assess the West African PA network’s 
vulnerabilities to climate change, with a particular focus on 
five countries (Mali, Chad, Gambia, Togo and Sierra Leone), in 
order to identify potential risks and develop plans for adaptive 
management to minimize those risks. Species distribution 
model-based assessment was developed at Durham University, 

combining data on species distributions (IUCN; BirdLife 
International), climate simulations (Met Office Hadley Centre) 
and PA location (UNEP-WCMC).

3. Rationale for approach and methods
Our approach for assessing climate change vulnerability was 
based on developing species distribution models that aim to 
describe the statistical relationship between a species’ current 
distribution and climate. This approach has the advantage 
of an extensive methodological literature, having clear 
methodological and biological assumptions and relatively low 
data requirements (i.e., relative to mechanistic models). The 
latter was important because species-specific demographic data 
for the West Africa region are limited.

Suitability of methods
Correlative Trait-based Mechanistic Combined

Meets 
objectives?

Yes Yes No Yes

Resources 
available?

Resources 
were 
suitable for 
a coarse 
scale 
regional 
analysis

Resources 
were 
suitable for a 
coarse scale 
regional 
analysis

Not enough 
information 
available for 
almost all 
species

Yes

Selected? Yes Yes No Information 
on species-
specific 
dispersal 
was 
incorporated 
into 
projected 
range shifts

4. Application of methods
We modelled the distribution of 146 amphibian, 768 bird and 
382 mammal species, using a species distribution modelling 
approach that aimed to capture the likely uncertainty in the 
models (i.e., due to uncertainty in modelling method and 
climate simulations). These taxonomic groups were chosen for 
inclusion because their distribution data across the region 
were largely complete at a coarse resolution and this enabled 
us to assess community-wide impacts across whole groups of 
species. Species distribution data were compiled and checked 
by IUCN and BirdLife International (BirdLife & NatureServe, 
2013; IUCN, 2014) and PA locality data were compiled and 
validated by UNEP-WCMC (IUCN & UNEP-WCMC, 
2013). 

The climates of West Africa, and similarly many other areas 
of the globe, are not easily simulated in climate models and 
not all climate simulations are equally plausible for a given 
region (McSweeney et al., 2012, 2014) General circulation 
model (GCM) simulations of the global climate system used 
in this study were selected based on their ability to describe 
historic meteorological observations across the region and 

10. Case studies
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Figure CS7.1. Number of species within each taxonomic 
group, and in each time period, projected to experience 
increasing or decreasing climate suitability across 
the West African PA network. Light shading shows the 
number of species with increasing or decreasing suitability 
across the network based on the median estimate of 
suitability in each time period, and dark shading indicates 
species where 95% of the projected estimates of change in 
climate suitability for a species showed directional consensus 
(increasing or decreasing).

the range of responses to climate forcing. These coarse 
resolution simulations were then downscaled to a 50  km 
spatial resolution using dynamical downscaling (e.g., Jones et 
al., 2004). Dynamical downscaling uses a physical model to 
simulate local and regional scale interactions across a small 
focal region at a higher resolution than the GCM. This 
approach can incorporate processes that occur at finer spatial 
resolutions than can be considered by the GCM, such as a 
more detailed depiction of coastlines, which leads to better 
simulation of land-sea processes, and a more detailed depiction 
of surface orography, resulting in more realistic simulation of 
local temperature and rainfall patterns.

The species distribution modelling approach used closely 
followed the approach of (Bagchi et al., 2013), in which an 
ensemble of models was built that aimed to capture uncertainty 
across a number of different quantifiable sources (e.g., 
modelling algorithm, climate projections, and uncertainty 
due to spatial dependency in the data). The modelling 
approaches used were: generalized linear models (GLM), 
generalized additive models (GAM), generalized boosted 
models (GBM) and random forests (RF). Species distribution 
models were internally validated by using a leave-one-out 
cross-validation procedure and assessing the model’s ability to 
correctly predict species presences and absences using the Area 
Under the Curve (AUC). 

We used these modelled relationships to project the likely 
distribution in future time periods using simulations of climate 
change under the assumption that these species-climate 
relationships will remain constant through time. We used data 
on species-specific dispersal capabilities to set reasonable limits 
to the distance over which a species could move in a given 
time period (following the approach of (Barbet-Massin et al., 
2012). The probability of a species occurring in a 50 x 50 km 
cell (native resolution of the climate data) was then mapped 
to each PA by assuming that the PA’s climate was not too 
dissimilar to the climate at the coarser resolution used in the 
models. The species turnover, which is a metric of community 
change over time and a useful indicator of impact, was 
then calculated between the baseline and three future time 
periods (‘2040’ = 2011–2040; ‘2070’ = 2041–2070; ‘2100’ = 
2071–2100). The uncertainty in projected impacts at both the 
PA and the species level was assessed across the ensemble of 
projections.

5. Summary of results
Substantial species turnover across the network was projected 
for all three taxonomic groups by 2100 (amphibians = 42.5% 
(median); birds = 35.2%; mammals = 37.9%), which suggests 
large change in community composition across the region’s 
PAs. Uncertainty in our projected impacts is high, particularly 
for amphibians and mammals, but consistent patterns of 
impacts across taxa emerge above the uncertainty by early- to 
mid-century, suggesting high impacts across the Lower Guinea 
forest biome (centred on the Ivory Coast). 

Based on the change in climate suitability, the majority of 
species in each taxonomic group are projected to have decreasing 
suitability across the PA network by at least 2070 [amphibians 
= 63% of spp. (92 spp.); birds = 55% (419); mammals = 63% 
(239)]. This can be seen in Figure CS7.1. 

Amphibian species of conservation concern are predicted to 
be most impacted by climate change with >75% of amphibian 
species projected as ‘extremely likely’ (i.e., agreement between 
most models) to experience a decline in climate suitability 
across the PA network in all time periods.

6. Conservation outcomes
The results of this analysis have been published in a peer-
reviewed journal (Baker et al., 2015) and as a report for the 
PARCC project. Some of the results will appear on the online 
Protected Planet database and will thereby alert people to 
PA-specific vulnerabilities. These results are likely to be used 
in the future to guide focal research in the region. However, 
at present it is too early to comment on the impact of these 
vulnerability assessments.
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7. Room for improvement
The major difficulties in conducting a large-scale climate 
change vulnerability assessment result from data limitations 
and the mismatch between the spatial resolution of the data 
and the scale at which individual organisms respond to the 
environment. Coarse resolution assessments of climate change 
vulnerabilities should now be used to inform field-based 
studies on the most vulnerable species and the locations likely 
to experience the greatest environmental change. This must 
include basic population monitoring across divergent taxonomic 
groups (plants, invertebrates, mammals, birds) and detailed 
demographic monitoring of focal species, specifically collecting 
information on abundance, productivity and survival. This 
information will be vital for understanding the mechanisms 
linking demographic changes to environmental changes, and 
will help inform conservation decisions in the future. 

An important component of this project was the close 
collaboration with the climate scientists providing the regional 
climate simulation data. Our approach for selection of the 
GCMs and downscaling these data to finer-scale projections 
provides some degree of confidence that this study is based on 
climate simulations that are regionally plausible (Buontempo 
et al., 2015). However, the considerable technical overheads 
involved in producing these climate simulations are likely to 
be prohibitive in many cases, and a consequence is that our 
impact assessment explores only a single ‘middle-of-the-road’ 
emissions pathway, which might be overly conservative. Our 
study does, however, incorporate uncertainty in historic 
climate data (although here simulated), which has been shown 
to be important for ecological impact assessments (Baker et 
al., 2016). Overall, there is much scope to improve the use of 
climate data in ecological impact assessments, but we hope that 
the approach taken here provides some ideas for good practice.
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Case Study 8. Correlative-mechanistic 
CCVA of the Iberian Lynx

By: Resit Akcakaya
Based on: Fordham et al., 2013

1. Overall objectives
This case study focuses on assessing climate change vulnerability 
of the Iberian Lynx (Lynx pardinus), as well as the effectiveness 
of conservation plans for its recovery. The Iberian Lynx is at 
risk of extinction due to the combined and interacting effects 
of climate change and habitat loss affecting both the lynx and 
its primary prey species, the European Rabbit (Oryctolagus 
cuniculus), as well as the effects of two diseases on the prey 
species (Fordham et al., 2013).

Summary of the CCVA objectives
Objectives 1.	How vulnerable is the Iberian Lynx to extinction 

under different climate change scenarios?
2.	How effective are the current conservation 

measures planned for the species?
3.	How effective would a new conservation plan be 

that takes climate change into account?
Taxonomic 
focus

Iberian Lynx and its prey species, the European 
Rabbit

Geographic 
focus

The Iberian Peninsula (total current and future 
expected range of the lynx)

Time frame From present (2013) to the end of the century (2090)

Going beyond this particular species, a broader objective of the 
study was to provide a framework for a next-generation model 
which simultaneously incorporates demography, dispersal, and 
biotic interactions (predation and disease) into estimation of 
extinction risk and evaluation of conservation plans under 
projected climate change (Kissling 2013).

2. Context
The Iberian Lynx (Lynx pardinus) is one of world’s most 
threatened mammal species, and is considered to be on the 
brink of extinction. The population size and the range of the 
Iberian lynx have declined sharply since the 1950s. More than 
80% of the diet of the Iberian Lynx consists of European 
Rabbit (Oryctolagus cuniculus), whose abundance has sharply 
declined because of the myxomatosis virus in the 1950s, rabbit 
haemorrhagic disease in recent decades, as well as over-hunting 
and the loss and fragmentation of its habitat. In addition, 
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human-caused mortality of Iberian Lynx due to poisoning, 
poaching and road kills have contributed to the reduction of 
the lynx population.

To prevent the extinction of Iberian Lynx, captive breeding 
programmes have been initiated to facilitate the species’ 
reintroduction into suitable areas within their historical 
range, in parallel with management aimed at increasing 
the carrying capacity of reintroduction sites. Climate 
change could further threaten the survival of the species, 
but recovery plans for the species have not incorporated the 
projected changes in climate.

3. Rationale for approach and methods
The approach used in this case study is based on the idea that the 
conservation status and recovery of species are determined both 
by their habitat and their demographic traits or characteristics. 
As a result, approaches that rely only on projected habitat 
cannot adequately assess species’ vulnerability, nor evaluate 
conservation options for their recovery. Especially for 
assessments of species where there is a strong biotic interaction 
with another species (such as a predator dependent on a single 
prey species), biotic interactions must be explicitly incorporated. 

The Iberian Lynx is affected by multiple threats, and is also 
subject to predator-prey dynamics where the lynx almost 
exclusively relies on the rabbit, which in turn is impacted 
by diseases. Assessing the species therefore required a novel 
approach that combined demography, spatial dynamics, and 
biotic interactions. Fordham et al. (2013) used ecological niche 
models coupled to metapopulation simulations with source-
sink dynamics, to directly investigate the combined effects of 
climate change, prey availability and management intervention 
on the persistence of the Iberian Lynx. This approach is novel in 
that it explicitly models dynamic bi-trophic species interactions 
in a climate change setting. 

Suitability of methods
Correlative Trait-based Mechanistic Combined

Meets 
objectives?

In part No In part Yes

Resources 
available?

Yes Yes Yes Yes

Selected? No No No Yes

4. Application of methods
Fordham et al. (2013) collated information on the following 
aspects of the lynx-rabbit system:
•	 Geo-referenced occurrence records of the Iberian Lynx and 

European rabbit.
•	 Data on annual rainfall and mean temperature of the hottest 

and coolest months (July and January, respectively). Based 
on previous studies, these climatic variables were identified 
as being likely to have the largest potential climate influence 
on Iberian Lynx and European Rabbit abundance. 

•	 Annual time series of these climate change variables, 
generated according to two emissions scenarios.

•	 Land cover data (map of land cover types).
•	 Protected Area map.
•	 Time series data for European rabbit, extracted from the 

Global Population Dynamics Database.
•	 Information on the demography of the Iberian Lynx 

(including age-specific survival and fecundity, and density 
dependence), and European rabbit (including disease 
dynamics), based on previous studies.

Using these data, Fordham et al. (2013) developed ecological 
niche models and demographic (metapopulation) models for 
both species. For each species, the ecological niche model 
determined the carrying capacities and spatial arrangement of 
habitat patches, forming the spatial basis of the demographic 
model, which was dynamic in order to simulate temporal 
changes in the species’ habitat. This linkage between the niche 
and demographic models followed methods that have been 
applied in previous cases (Akçakaya et al., 2004, 2005; Keith 
et al., 2008; Fordham et al., 2012). What was novel about 
this study was the linkage of the models for the two species 
to simulate biotic interactions. Briefly, the results of the rabbit 
model were used as input for the lynx model, such that rabbit 
abundance at each time step of the simulation was one of the 
factors (in addition to climate and land cover) that contributed 
to the lynx population dynamics. 

In addition to running the models to estimate the extinction 
risk of the lynx without any conservation measures, the lynx 
model was modified to test the effectiveness of translocation 
of lynxes to suitable areas as a conservation measure. Two 
conservation measures were tested: the current conservation 
plan and a plan optimized under climate change.

5. Summary of results
The results showed that anticipated climate change will rapidly 
and severely decrease lynx abundance and is likely to lead to the 
species’ extinction in the wild within 50 years, even with strong 
global efforts to mitigate greenhouse gas emissions. However, 
the results also showed that a carefully planned reintroduction 
programme, accounting for the effects of climate change, 
prey abundance and habitat connectivity, could prevent 
the extinction of the lynx and result in a robust recovery. In 
contrast, the results showed that the current conservation plan, 
which does not incorporate the effects of climate change, is not 
likely to lead to the recovery of the Iberian lynx, and may not 
even prevent its extinction.

6. Conservation outcomes
As more species are impacted by climate change and habitat 
loss, conservation translocations are likely to be more 
commonly used. An important step in planning conservation 
translocation is to quantify the effectiveness of alternative 
translocation plans, which may differ in terms of the location 
of source and target populations, the number, sex, and age 
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of individuals to be translocated, and the frequency and 
timing of translocations. This can be done by simulating the 
dynamics of the focal species with models in which potential 
source and target populations are modelled as subpopulations 
of a metapopulation (e.g., Kuemmerle et al., 2011). This study 
demonstrated the use of models in quantifying the effects of 
translocations on species and, for the first time, the importance 
of incorporating prey availability, climate change and their 
interaction in models to design conservation plans to prevent 
species extinctions. 
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Case Study 9. Matching species traits 
to correlative model projections in a 
combined CCVA approach

By: Raquel A. Garcia
Based on: Garcia et al., 2012

1. Overall objectives
Assessing the vulnerability of species to climate change requires 
an understanding of species’ exposure to extrinsic threats, and 
of their intrinsic sensitivity or adaptive capacity to respond to 
such threats. Whereas trait-based approaches can combine the 
components of exposure and sensitivity/ adaptive capacity to 
derive vulnerability scores, the measures of exposure used are 
often simplistic and spatially confined to the present range of 
the species. By relying on correlative models to assess exposure, 
the losses, gains and fragmentation of areas of suitable climate 
can be mapped to gain a better understanding of the different 
threats (and opportunities) that species may face. Each threat 
can then be compared to intrinsic traits that might mediate the 
response of species to that particular threat. Specific traits are 
likely to mediate species’ responses to different threats (Isaac 
and Cowlishaw 2004, Murray et al., 2011), but this specificity 
has hitherto not been sufficiently addressed in CCVAs. Here 
we present a combined CCVA approach that borrows strength 
from both correlative models and traits and yields spatially 
explicit outputs. 

The productivity of Central Africa’s Lake Tanganyika is predicted to decline. The extreme depth of the lake causes convection currents that 
bring nutrient-rich deeper waters to the surface, making the lake highly productive. However, climate change driven warming of surface 
water is predicted to decrease the extent of mixing. Fishermen in the Tanzanian village of Kala report reductions in their fish catch over the 
last decade; productivity declines are also likely to affect lake ecosystems and species. © Wendy B. Foden
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We use published results of correlative models for 195 species 
of sub-Saharan African amphibians (Garcia et al., 2012), 
and quantify the degree of loss, gain and fragmentation 
of climatically suitable areas for each. Based on previously 
published empirical and theoretical work, we then identify 
potential ‘response-mediating traits’ for each projected 
change, and gather those for which there are data available 
for our species. By spatially overlaying areas of projected 
extrinsic changes and areas of high intrinsic vulnerability, we 
map geographical areas where species are both exposed and 
vulnerable to climate change.

Summary of the CCVA objectives
Objectives 1.	 To describe projected extrinsic threats and 

opportunities from climate change given 
by correlative models: losses, gains and 
fragmentation of suitable climate space for 
species.

2.	 To select traits that might mediate species’ 
responses to each of those threats and 
opportunities. 

3.	 To examine the spatial overlap between the 
two, so as to identify areas where species 
might be both exposed to extrinsic threats 
and intrinsically vulnerable to them.

Taxonomic focus Amphibians
Geographic focus Sub-Saharan Africa
Time frame From 1961–90 to 2050 

2. Context
We focused on sub-Saharan African amphibians for three 
reasons. First, these species are expected to be highly 
vulnerable to climate change. Worldwide, amphibian 
populations are declining due to a multitude of threats that 
include habitat destruction, climate change and the fungal 
disease chytridiomycosis (Blaustein and Kiesecker 2002, 
Hof et al., 2011, Li et al., 2013). Climate change, often in 
tandem with land-use change, is expected to affect large 
areas of tropical Africa in the future (Hof et al., 2011, 
Foden et al., 2013). Second, we take advantage of available 
correlative model results (Garcia et al., 2012) and trait data 
(Foden et al., 2013). Third, a case study focused on sub-
Saharan African amphibians illustrates the application of 
our framework when traits in the strict sense (Violle et al., 
2007) are largely unavailable, a situation that is common 
for many taxonomic groups (González-Suárez et al., 2012). 
The work brought together researchers involved in previous 
correlative model work (Raquel A. Garcia, Miguel B. Araújo, 
Mar Cabeza, Carsten Rahbek and Neil D. Burgess) and trait-
based work (Wendy B. Foden and Alexander Gutsche).

3. Rationale for approach and methods
Our aim was to identify geographical areas where species are 
potentially exposed to threats from climate change through 
sensitivity or a lack of the adaptive capacity to respond to 
them. We also wanted to understand where climate change 
presents opportunities for species to expand their ranges. 

While mechanistic models would be the most suitable CCVA 
method to address this question, we lacked the physiological 
data required. Trait-based methods would only partly address 
the question, without determining the opportunities for new 
climatically suitable areas and the threat of fragmentation of 
climatically suitable areas. Because we had results available 
from correlative models as well as trait data, we selected a 
combination of correlative and trait-based methods.

Suitability of methods
Correlative Trait-

based
Mechanistic Combined

Meets objectives? No Yes Yes Yes
Resources available? Yes Yes No Yes
Selected? No No No Yes

For consideration of projected losses, increased fragmentation 
and gains of climate space, we selected potential response-
mediating traits and examined the spatial overlap with 
vulnerability due to traits that were deemed relevant in each 
case. We examined the overlap for all species, and individually 
for groups of species with different combinations of threats and 
opportunities.

4. Application of methods
We applied the framework to 195 sub-Saharan African 
amphibians with both available bioclimatic envelope model 
projections for the mid-21st century (Garcia et al., 2012) and 
trait data (Foden et al., 2013). Excluded were 500 narrow-
ranging species that mainly occur in montane areas. Correlative 
model results and trait data (provided in spreadsheets) were 
processed and mapped in R (R Development Core Team 2010). 

First, to characterize climate change-induced threats and 
opportunities for each species, we compared the projections 
of baseline and future climatic suitability to compute losses, 
fragmentation and gains of climatic suitability, and calculated 
the distances to new areas gained. We obtained maps of 
changes for each species, and compiled composite maps for all 
species by summing individual maps. 

Second, based on theoretical and empirical studies, we selected 
potential ‘response-mediating traits’ for each threat. Among 
these, we selected the traits (or proxies for traits) for which we 
had available data. For each trait, we assigned species “high”, 
lower” or “unknown” sensitivity/ adaptive capacity scores, 
based on pre-selected thresholds (Foden et al., 2013). Third, 
we mapped each extrinsic threat and overlaid it with the maps 
for the classification of relevant traits for that threat. For 
each combination of extrinsic threat and response-mediating 
trait (e.g., projected gains in climatic suitability and dispersal 
ability), we obtained gridded outputs for the number of species 
exposed to a threat and considered sensitive or having low 
adaptive capacity to respond to that threat versus the number 
of species exposed to a threat but considered less sensitive or 
having high adaptive capacity to respond to that threat. 
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5. Summary of results
The gridded outputs were mapped to determine areas where 
exposure and high sensitivity and/or low adaptive capacity 
overlapped for many species. In the Congo Basin and arid 
Southern Africa, projected losses for wide-ranging amphibians 
were compounded by sensitivity to climatic variation, and 
expected gains were precluded by poor dispersal ability. The 
spatial overlap between exposure and vulnerability was more 
pronounced for species projected to have their climate space 
contracting in situ or shifting to distant geographical areas. 
Our results excluded the potential exposure of range-restricted 
species to shrinking areas of suitable climate in the African 
tropical mountains.

6. Conservation outcomes
The work was published in the Journal of Biogeography (Garcia 
et al., 2014). We illustrate the application of a framework 
combining spatial projections of climate change exposure with 
traits that are likely to mediate species’ responses. Although the 
proposed framework carries several assumptions that require 
further scrutiny, its application adds a degree of realism to 
familiar CCVAs based on correlative models that consider 
all species to be equally affected by climate change-induced 
threats and opportunities. 

7. Room for improvement
The trait data used here are mainly ecological characteristics 
of species or their ranges rather than traits in a strict sense 
(Violle et al., 2007), and thus do not strictly summarize 
traits, but rather the interaction between traits and the 
environment. High quality trait data are often not easily 
accessible, but, when possible, data should be used that rely 
on direct measurement of traits. For example, measurement 
of tolerance to climatic variation, here inferred with statistical 
approaches relating current ranges of species to climate 
variables, should instead rely on an experimental approach 
applied to estimating the safety thermal limits (Arribas et 
al., 2012). Likewise, estimates of species’ dispersal abilities 
derived from empirical data on organism movement (e.g., 
Gamble et al., 2007), phylogenetic distances (Arribas et al., 
2012), or morphological or life-history traits (Whitmee et 
al., 2012, Baselga et al., 2012) would more reliably predict 
the ability of species to track suitable climates than estimates 
based on known geographical ranges of species as applied 
here. By the same token, the thresholds for classification of 
species’ sensitivity or adaptive capacity based on selected 
traits should, when possible, be empirically based.  

Due to data limitations (with respect to traits, but mainly 
to available correlative models), the analysis excludes most 
threatened amphibians, particularly those from the Cameroon 
highlands and Eastern Afromontane centres of diversity. 
Phylogenetic inference methods exist that could circumvent 
the bias in the trait data (Nakagawa and Freckleton 2008, 
Buckley and Kingsolver 2012), but, for the bulk of the species 
excluded here, new approaches that overcome limitations of 

correlative models are needed to assess the vulnerability of 
range-restricted species to climate change.
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Case Study 10. A combined approach 
for CCVA of the Mountain Ringlet (Erebia 
epiphron) and Stag Beetle (Lucanus 
cervus) in Great Britain

By: Chris J. Wheatley and Chris D. Thomas
Based on: Thomas et al., 2011

1. Overall objectives
Conventional risk frameworks may not be appropriate tools for 
dealing with species that decline in some regions but expand 
into others, a situation that is likely to be common under 
climate change. The need to consider regions of expansion 
and contraction separately arises because the causes of decline 
and constraints on expansion (and hence any conservation 
actions) may differ. In addition, conventional risk frameworks 
rarely operate over the long time scales during which species 
are expected to respond to climate change. We developed a 
framework to evaluate species’ responses to climate change, 
so that both observed and expected responses can be used to 
inform conservation prioritization. Like IUCN Red-Listing, it 
can be thought of as an iterative process, whereby assessments 
can be re-run as improved data on observed trends become 
available and better models of future prospects are developed.

The framework is applied to individual species and aims to 
assess net declines within regions that are currently occupied, 
and expansions into new areas, associated with climate 
change. It can be applied at any spatial extent (regional, 
continental or global distributions of species) and resolution 
(from population-level information to gridded distribution), 
and complements existing conservation assessment protocols 
such as red-listing, with overlap in terms of data inputs and 
requirements. Using observed and projected population and ⁄or 
range data, it is possible to carry out systematic conservation 
status assessments that inform the development of monitoring, 
adaptation measures and conservation management planning 
for species in response to climate change.

Summary of the CCVA objectives
Objectives 1.	Identify both climate-related declines (within 

the existing distribution) and expansions (into 
new regions) for individual species.

2.	Identify which species are most vulnerable to 
climate change.

3.	Identify which species are most likely to 
benefit from climate change.

4.	Inform the development of monitoring, 
adaptation measures and conservation 
management planning for species that are 
responding to climate change.

Taxonomic focus Mountain Ringlet (Erebia epiphron ; Lepidoptera)
Stag Beetle (Lucanus cervus ; Coleoptera)

Geographic focus Great Britain
Time frame From past distribution (1980) to late 21st century 

(2080)

2. Context
The vulnerability assessment was developed through the UK 
Population Biology Network (UKPopNet, funded by the UK 
Natural Environment Research Council and English Nature), 
an interdisciplinary project with contributions from scientists, 
policy makers and conservation practitioners. Inspired by the 
IUCN red-listing process, the vulnerability assessment project 
aimed to identify how the increasing amount of information 
available on the observed responses of species to climate change 
over recent decades could be combined with projected future 
responses of the same species to generate realistic conservation 
assessments. 

Because many species in Great Britain are at their northern 
(polewards) range margin and therefore expected to respond 
positively to climate change by expanding their distributions, 
the vulnerability assessment needed to incorporate the 
possibility for climate-based expansion, rather than just the 
risk of declines commonly considered by climate vulnerability 
assessments. This would help identify conservation strategies to 
facilitate expansions as well as those aiming to reduce declines. 
Facilitating expansions is likely to be important to the long-
term maintenance of biodiversity, given that the same species 
are likely to be declining at their southern (polewards) range 
boundaries, outside of Great Britain.

The framework was developed to work at any spatial scale, 
from local to global, but, for the purposes of validation of 
the methodology, it was tested at the national scale in Great 
Britain.

3. Rationale for approach and methods
The framework needed to identify species that face a perilous 
future in a changing climate and those species where a tactical 
use of resources could facilitate their future recovery or spread. 
It also needed to consider the balance between areas of decline 
and regions of potential expansion of the range of an individual 
species – facilitating prioritization of actions that reduce 
declines and facilitate expansions. A species-centric approach 

Left: A mating pair of Marbled White butterflies (Melanargia 
galathea) at the site of their assisted colonization in northern 
England. This area is outside the species’ historical range but has 
become warm enough for them. © Steve Willis.
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was also required as it is species, and not entire communities, 
that shift their distributions in response to climate change 
(although common conservation measures may meet the needs 
of multiple individual species). The framework aims to provide 
a risk assessment for each species, with the development of any 
conservation actions flowing from the assessment, rather than 
being incorporated within the framework itself.

The approach of the Thomas et al. (2011) framework 
(a)  incorporates information on both observed and projected 
trends (flexibly using population and/or distribution data) to 
maximize the information that is included; (b) treats habitat 
and trait data (e.g., dispersal) as constraints to evaluate the 
likelihood that climate-only projections will be realized or 
exacerbated; (c) considers uncertainty in the assessment; and 
(d) provides assessments over time scales that are relevant to 
climate change and conservation, given that we are already 
committed to ~100 years of climate change (even with optimistic 
climate mitigation measures). Trait data are considered to be 
modifiers of the expected response rather than primary drivers 
of vulnerability, given that relationships between traits and 
climate change responses are unlikely to be strong across the 
full range of taxa (e.g., plants, invertebrates, vertebrates) that 
will need to be assessed.

Data for a correlative approach to the assessment were available 
for all species of interest, so resource requirements were not 
a limiting factor. Previous studies of the species within the 
assessment area provided the necessary trait data. These 
population and trait approaches could be combined without 
the potentially high resource cost in terms of time and financial 
need that may have been the case for less well studied taxa. 
Flexibility of the approach (e.g., just using modelled distribution 
data) makes assessments possible even for regions and taxa 
where information is limited, but inevitably such assessments 
will be assigned lower levels of confidence.

Suitability of methods
Correlative Trait-based Mechanistic Combined

Meets 
objectives?

In part In part Yes Yes

Resources 
available?

Yes Yes Data availability 
insufficient for 
some species

Yes

Selected? No No No Yes

Data inputs required to run the assessment are little different 
from those required for other conservation assessments (e.g. 
red-listing, species action plans), which allowed the framework 
to be run in a reasonable time frame while taking advantage of 
existing data.

The framework gives equal focus to benefits of climate change, 
assigning levels of benefit in the same way as is done for risk. 
Many other climate vulnerability assessments simply combine 
all species with any opportunities under climate change into a 

single low risk category, but the degree to which species may 
benefit is potentially as interesting as how likely they are to 
decline. The framework also attempts to incorporate the level 
of certainty in the input data and conclusions of the assessment, 
allowing for anyone interpreting the results of the assessment to 
not only consider the potential risk or benefit faced by a species, 
but also have an idea of the level of support for the conclusions 
of any assessment. 

4. Application of methods
The Mountain Ringlet Butterfly (Erebia epiphron) and Stag 
Beetle (Lucanus cervus) were selected as case study species for 
the assessment due to their opposite range margins in the 
assessment area (northern vs. southern, respectively) and to test 
how applicable the assessment was across different taxonomic 
groups.

The framework method combines a decline score (based 
on observed and projected declines) with an increase score 
(observed increase and projected increases) to produce on 
overall assessment of potential risk for a species. Each stage of 
the assessment is also scored based on the level of confidence 
in the input data or model; and this score is used to weight 
the assessment towards information that is most certain. The 
overall score is converted to one of six risk categories ranging 
from high benefit to high risk.

Future distributions of the target species had already been 
modelled and historical distribution/population data within 
Great Britain were readily available. Historic distribution and 
population changes for the mountain ringlet were obtained 
from published sources with data back to 1970 (Asher et al., 
2001; Fox et al., 2006). The modelled future distribution was 
based on projections for 2080 using an intermediate emissions 
scenario (BAMBU – A2, Settele, 2008). Observed changes in 
distribution and population for the stag beetle were obtained 
from the UK’s National Biodiversity Network Gateway for the 
period of 1990–1999 to 2000–2009. Future distributions were 
obtained from MONARCH outputs from a low emissions 
scenario (IPCC SRES report scenario B1) for 2080 (Walmsley 
et al., 2007).

Data on exacerbating factors were collected from various 
sources, including relevant scientific publications, taxon-
specific field guides and consultation with experts. To run the 
assessment for a single species takes approximately one hour, 
although the time may be considerably longer if modelled 
future distributions are not already available, or if meetings are 
required to develop expert opinion (initial assessments of test 
species took an average of about one species per day because the 
framework was still being developed).

5. Summary of results
Mountain Ringlet (Erebia epiphron) was scored as being at 
very high risk for climate-related declines within the existing 
range and low opportunity for climate-based expansion. This 

10. Case studies
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produced a combined score of high risk under climate change 
with a good confidence level in the assessment. As a northerly 
distributed montane species, the mountain ringlet has little 
opportunity to expand outwards from its existing range to 
new areas of suitable habitat. The high risk of climate-related 
declines within the existing range (observed and modelled), 
coupled with the lack of suitable area to expand to, suggest the 
main management approach would be to concentrate efforts 
within existing localities to mitigate losses as much as possible. 
It also suggests that the risk to European populations of this 
species require assessment to evaluate whether the species is at 
risk of regional (Great Britain) or global (i.e. Europe, as it is a 
continental endemic) extinction.

The assessment of the Stag Beetle (Lucanus cervus) resulted 
in an assignment to the high potential benefit category, 
identifying it as a species likely to undergo a large expansion 
in Great Britain by 2080. The confidence in the assessment 
was lower than that for mountain ringlet, as a consequence of 
the shorter time period for which historical data were available 
and the less complete nature of the data available. Despite the 
large projected expansion in range for stag beetle, there is also 
uncertainty as to whether the species would be able to disperse 
across a largely human-dominated landscape, which further 
reduces confidence in the assessment. This lower confidence 
highlights the importance of continued and improved 
monitoring of the species, to ensure that the projected benefits 
are actually achieved in the future. If not, conservation actions 
(e.g., establishing habitat connections) might be considered 
desirable to ensure that the potential benefits are realized.

6. Conservation outcomes
The framework has been used to assess 400 species in England, 
including all Natural Environment and Rural Communities 
(NERC) Act priority species, which are listed as species of 
principal importance for the conservation of biodiversity 
in England (Pearce-Higgins et al., 2015). The results of the 
assessment were then used to inform whether management to 
reduce pressures other than climate and increase resilience to 
change, or management to increase the rate of range expansion, 
might be required.

7. Room for improvement
The assessment process is reliant on expert opinion, both to 
identify sources of data that are reliable and robust enough 
to calculate historical trends, as well to evaluate if there are 
any species-specific exacerbating factors. The results of the 
assessment and associated confidence level should also be 
reviewed by experts with knowledge of both the species and 
climate change before any management decisions are taken 
based upon the assessment outcome.

A strength of the method is that it combines information on 
both empirical and modelled responses to climate change, and 
gives greater weight to the information that is most certain 
(usually the past empirical trends, unless the modelled results 
have themselves been tested against independent empirical 
trend data). Test species were considered only for single climate 
scenarios, and consideration of multiple climate scenarios 
will further reduce the uncertainty of future projections – an 
issue that applies to any risk assessment framework. Future 
uncertainty will always remain, so further adaptations in 
assessing the distribution of outcomes may be desirable (e.g., 
considering the likelihood of falling within the highest risk 
category).

The framework currently uses linear decline rates relative 
to the starting population or distribution, but incremental 
expansion rates to calculate increases relative to the beginning 
of each decade. There is potential scope for future iterations of 
the framework to include alternative methods of calculating 
declines or expansions, dependent on data quality and 
availability.

The geographic scale of the case study assessment area limits the 
effect of climate change to primarily act in a single direction on 
the species considered – either to cause it benefit or loss. Over a 
wider area of assessment, species may be expected to experience 
areas of both response types. Testing how well the assessment 
handles this type of situation would be another important 
validation step.
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12. Appendix

Appendix Table A. Examples of methods that have been used to apply a correlative 
approach to CCVA.
Method type Climate envelope Regression-based Machine learning Bayesian approaches
How it works This method is now considered 

out-dated, except for possible use 
for rare species.
It defines the multi-dimensional 
bioclimatic space where the species 
can live. It assumes that the species 
is equally viable for any combination 
of bioclimatic variables within this 
space, and ignores interacting effects 
of different variables, e.g., total 
precipitation and mean temperature. 

Uses regression analysis 
to characterize species’ 
relationships with bioclimatic 
variables across their ranges. 
Allows for interaction terms and 
gives probabilistic outputs.

Uses automated algorithms 
to iteratively learn species’ 
relationships with bioclimatic 
variables across their ranges. 
No assumptions are made 
by the users about their 
relationship; they are defined 
by the algorithms. 

Uses Bayes’ theorem 
to describe sources 
of uncertainty in a 
statistical model, wherein 
parameters are treated 
as random variables 
with prior distributions. 
Bayesian approaches 
lend themselves well to 
ecologically complex, 
multi-level data, and can 
be applied iteratively 
for machine learning 
applications.

Methods 1.	 Multilevel rectilinear envelope1 
2.	Binary convex hull envelope2

3.	Fuzzy Envelope
4.	Continuous point-to-point similarity 

metric3

5.	Ecological niche factor analysis4

1.	Generalized linear models 
(GLM)5,6

2.	Generalized additive models 
(GAM)5,7

3.	Multivariate adaptive regression 
splines (MARS)8

4.	Boosted Regression Trees (BRT)
5.	Zero-inflated models (Poisson; 

Negative Binomial)
6.	Hurdle Model
7.	GRASP9

1.	Artificial neural networks 
(ANN)10

2.	Random forests (RF)
3.	Maximum Entropy 

(MaxEnt)11

4.	Genetic algorithms12

5.	Flexible discriminant 
analysis

1.	Hierarchical Species 
Distribution modelling

2.	Gaussian Random 
Fields13

Tools available For (1): BIOCLIM14, DIVA15 and GARP16

For (2): HABITAT2

For (3): DOMAIN17 (free)
For (4): BIOMAPPER18 (free) 
For (5): ENFA19 

For (1,2,3,4) use BIOMOD2 
platform in R20

ECOSPAT21

For (1): SPECIES (not free); 
BIOMOD (free)
For (2): BIOMOD
For (3): MAXENT (free)22; 
Wallace Initiative23(free)
For (4): GARP10

R-packages, for example 
Filzbach and GRaF

Data 
requirements 
differing from 
approaches

Presence only point data; absence 
data can help to refine predictions

Presence and pseudo-absence 
(background) data

Presence and pseudo-
absence (background) data

Presence and pseudo-
absence (background) data

Authors using 
this method

(Brereton et al., 1995)
(Beaumont et al., 2005)(BIOCLIM);
(Kadmon et al., 2003)
(Meynecke, 2004)
(Levinsky et al., 2007)

For (1): (Huntley et al., 2008) 
2008 (Locally weighted 
regression); (Varela et al., 2009)
For (2): (Mitikka et al., 2007; 
Trivedi et al., 2008)
For (3): (Leathwick et al., 2006) 
For (5): (Pacifici et al., 2015)

(Berry et al., 2003; Pearson, 
2007) 
1.	(Lawler et al., 2009)
2.	(Milanovich et al., 2010; 

Hof et al., 2012; Warren et 
al., 2013)

3.	(Warren et al., 2013)
	 (Hughes et al., 2012)
	 (Reside et al., 2012)

(Gelfand et al., 2006)
(Latimer et al., 2006)
(García-Valdés et al., 2015)
(Golding & Purse, 2016)
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Appendix Table B. Examples of methods that have been used to apply a trait-based 
approach to CCVA.

Trait-based CCVA Methods
Method Qualitative Semi-Quantitative
How it works Experts score or rank species according to 

generalized categories. These methods are generally 
only used when more quantitative assessment is 
unfeasible

The suite of traits and their vulnerability thresholds are expert-
selected; quantitative or qualitative trait data are used to score, 
rank or categorize species

Tools available SAVS (System for Assessing Vulnerability
of Species to Climate Change); 

Climate Change Vulnerability Index24

Data requirements additional to 
approaches

Distribution data not required Distribution data may be required

Software required None None for North America (ClimateWizard available). Some methods 
require GIS

Expertise required Thorough knowledge of the species and its ecology Thorough knowledge of the species and its ecology
Biological traits 
Species’ distribution ranges

Authors using this method (McNamara, 2010; Bagne et al., 2011; Advani, 2014) (Chin et al., 2010; Graham et al., 2011; Young et al., 2012; Foden et 
al., 2013)

Appendix Table C. Examples of methods that have been used to apply a mechanistic 
approach to CCVA. We note that Lurgi et al. (2015) provide a recent review of the mechanistic 
models and associated software available to simulate responses to climate change and 
provide a decision-tree on the choice of the model based on the data available, scientific and 
conservation needs and model organism. 
Method Demographic models

Output is abundance; can be used to calculate extinction risk
Mechanistic niche models 

Provide predictions of species distribution (vs. correlative 
models which predict suitable climate space)

Individual as modelled unit Population or species as 
modelled unit

Physiologically 
defined niches

Tolerances typically 
defined from experiment or 

observation

Energy balance 
defined niches

Tolerances defined using 
energy balance equations

Non-spatially 
explicit

Spatially explicit Non-spatially 
explicit

Spatial explicit

Tools used 
(and their 
availability)

Vortex25 (free) Hexsim26 (free) Life tables (n.a.)
RAMAS27 (not free)

RAMAS Metapop27

RAMAS GIS27 

(both not free)

(none available) Niche Mapper28 (upon 
request)

Example of 
use

(Wells et al., 2015)
(Serrano et al., 
2015)
(Naveda-Rodríguez 
et al., 2016)

(Carroll et al., 
2004)
(Schumaker et al., 
2014)
(Heinrichs et al., 
2016)

(Stanton, 2014) (Aiello-Lammens 
et al., 2011)
(Fordham et al., 
2013)
(Bonebrake et al., 
2014)
(Swab et al., 
2015)

(Monahan, 2009; Sunday et 
al., 2012; Overgaard et al., 
2014)

(Kearney & Porter, 2009)

Way in 
which CC is 
included

Direct influence 
on demographic 
parameters

Direct influence 
on demographic 
parameters and 
indirectly through 
changing habitat 
suitability

Direct Influence 
on demographic 
parameters

Direct influence 
on demographic 
parameters and 
indirectly through 
changing habitat 
suitability

Direct influence of 
bioclimate on physiology, 
performance or survival; 
indirectly through changing 
habitat suitability

Energy balance equations 
used to relate bioclimate 
to metabolic processes 
(e.g., body temperature, 
water exchange). These 
are then used to predict 
performance and survival 
under altered bioclimate.
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Appendix Table D. Examples of methods that have been used to apply a combination 
approach to CCVA.
Method TVA-Corr:

Trait-based 
approach that 

includes correlative 
model outputs

Corr-TVA 1:
Correlative 

approach that 
uses dispersal 

distances

Corr-TVA 2:
Correlative approach 

that considers 
sensitivity and 

adaptive capacity

Corr-Mech1:
Correlative 

approach that 
considers 

metapopulation 
dynamics and 

habitat suitability

Corr-Mech2:
As Corr-Mech1, 
but including 
inter-species 
interactions

Corr-Mech-TVA:
Criteria-based 

methods

How it works Use correlative 
models to estimate 
exposure. The CCVI 
uses model output 
where it’s available

Use dispersal 
data to determine 
the likelihood of 
species colonizing 
projected future 
ranges

Uses traits to identify 
areas of potential under 
or over prediction by 
correlative models

Metapopulation 
dynamics and 
variables determining 
habitat suitability 
(e.g., sea level rise, 
fires, stochasticity) 
interact with shifting 
climate space

As Corr-Mech1, 
but including 
inter-species 
interactions

Criteria are used to 
classify species into 
categories of risk 
based on the outcomes 
of correlative and/or 
mechanistic CCVAs, 
and can include trait 
data and observed 
species changes

Tools 
available

The Climate Change 
Vulnerability Index 
(CCVI)29

None beyond those 
for correlative 
modelling

None beyond those for 
correlative modelling

RAMAS GIS30

BIOMOVE
RAMAS GIS29 
(models for each 
species; then 
linked)

Data 
requirements 
differing from 
approaches

Point localities Dispersal distances Trait data Demographic data, 
appropriate variables 
describing habitat 
suitability

As Corr-Mech1, 
but including 
inter-species 
interactions

Authors 
using this 
method

(Young et al., 2012)
(Smith et al., 2016)

(Schloss et al., 
2012) use dispersal 
equations with trait 
data
(Warren et al., 
2013) use taxon 
group averaged 
dispersal rates 
(Visconti et al., 
2015) use dispersal 
per generation

(Garcia et al., 2014) (Keith et al., 2008) 
(Anderson et al., 
2009; RAMAS GIS)
(Midgley et al., 2010) 
(BIOMOVE)
(Fordham et al., 
2012)

(Harris et al., 
2012)
(Fordham et al., 
2013)

(Thomas et al., 2011)

Footnotes
1	 (Busby, 1991)
2	 (Walker & Cocks, 1991) 
3	 (Carpenter et al., 1993)
4	 (Hirzel et al., 2002)
5	 (Guisan et al., 2002)
6	 (McCullagh & Nelder, 1989)
7	 (Hastie & Tibshirani, 1990)
8	 (Elith & Leathwick, 2007)
9	 (Lehmann et al., 2002)
10	(Pearson et al., 2002)
11	(Phillips et al., 2006)
12	(Stockwell & Peters, 1999) 
13	(Golding & Purse, 2016)

14	http://agris.fao.org/agris-search/search.
do?recordID=AU9103158 

15	http://agris.fao.org/agris-search/search.
do?recordID=QP2007000038 

16	http://www.lifemapper.org/desktopgarp/ 
17	http://www.cifor.cgiar.org/docs/_ref/

research_tools/domain/; and http://diva-
gis.org

18	http://www2.unil.ch/biomapper/
19	http://www2.unil.ch/biomapper/enfa.html 
20	https://cran.r-project.org/web/packages/

biomod2/biomod2.pdf 
21	http://www.unil.ch/ecospat/home/

menuinst/tools--data/tools.html 

22	http://www.cs.princeton.edu/~schapire/
maxent/

23	http://http://wallaceinitiative.org/ 
24	https://connect.natureserve.org/science/

climate-change/ccvi 
25	http://vortex10.org/Vortex10.aspx 
26	http://www.hexsim.net/ 
27	https://www.ramas.com/ramas.htm
28	http://zoology.wisc.edu/faculty/por/por.

html#niche 
29	http://www.natureserve.org/conservation-

tools/climate-change-vulnerability-index 
30	https://www.ramas.com/ramas.htm
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